Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el...Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications.展开更多
The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In...The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.展开更多
The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn...The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement展开更多
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of com...Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.展开更多
The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide...The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.展开更多
Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axi...Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a...As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.展开更多
Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the l...Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the lowest temperature at which the wax begins to form.When crude oil cools to its WAT,wax crystals precipitate,forming deposits on pipelines as the solubility limit is reached.Therefore,WAT is a crucial quality assurance parameter,especially when dealing with modern fuel oil blends.In this study,we use machine learning via MATLAB’s Bioinformatics Toolbox to predict the WAT of marine fuel samples by correlating near-infrared spectral data with laboratory-measured values.The dataset provided by Intertek PLC-a total quality assurance provider of inspection,testing,and certification services-includes industrial data that is imbalanced,with a higher proportion of high-WAT samples compared to low-WAT samples.The objective is to predict marine fuel oil blends with unusually high WAT values(>35℃)without relying on time-consuming and irregular laboratory-based measurements.The results demonstrate that the developed model,based on the one-class support vector machine(OCSVM)algorithm,achieved a Recall of 96,accurately predicting 96%of fuel samples with WAT>35℃.For standard binary classification,the Recall was 85.7.The trained OCSVM model is expected to facilitate rapid and well-informed decision-making for logistics and storage when choosing fuel oils.展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine...A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine feet vibrations is presented.First,a generalized mathematical formulation is derived based on a state-space description which can be used for different kinds of models(1D,2D,and 3D models).It is shown that under special boundary conditions,the control parameters can be directly implemented into the stiffness and damping matrices of the system.Based on the generalized mathematical formulation,an example of a rotating machine—described by a 2D model—with journal bearings,flexible rotor,current-controlled electrodynamic actuators,steel frame foundation,and velocity feedback of the machine feet vibrations is presented where the effectiveness of the described active vibration control system is demonstrated.展开更多
The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine ...The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine and leveraging the strong anti-interference and high sensitivity characteristics of vibration signals,we proposed a VMD-SDP-CNN(Variational mode decomposition-Symmetric dot pattern-Convolutional neural network)fault diagnosis method based on switch machine vibration signals.Firstly,the vibration signal of the switch machine was decomposed by VMD to obtain several intrinsic mode function(IMF)components.Secondly,the SDP method was employed to transform the decomposed IMF components into two-dimensional images,and the issue of one-dimensional signal recognition was transformed into the issue of two-dimensional image recognition.Finally,a CNN was used to realize the fault diagnosis of the switch machine.The experimental results showed that the recognition accuracy of the five actual working conditions of the switch machine using this method was superior to that of typical deep learning and machine learning methods,verifying its practicability and effectiveness.展开更多
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model...The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.展开更多
With the continued advancement of deep electrification across various industries, the demand for higher power density in electric machines is steadily increasing. However, realizing high power density remains a signif...With the continued advancement of deep electrification across various industries, the demand for higher power density in electric machines is steadily increasing. However, realizing high power density remains a significant technical challenge and has become a major bottleneck in machine development. The design of such machines is inherently constrained by the strong coupling among electromagnetic(EM), thermal, and mechanical domains, while systematic analyses of these challenges remain insufficient. This paper clarifies the interdependent relationships among these domains during the machine design process. It reviews key enabling strategies, including machine design based on advanced electromagnetic theory, innovative thermal management techniques, cutting-edge material advancements, and state-of-the-art manufacturing technologies, that collectively enhance the performance and feasibility of high power density machines(HPDMs). The insights provided aim to support the development of nextgeneration machine systems with higher power density, compact size, and robust, sustainable performance across a wide range of industrial and technological applications.展开更多
Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility ar...Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility are key to mitigating disaster risk.This study integrated multi-source historical landslide data with 15 predictive factors and used several machine learning models—Random Forest(RF),Gradient Boosting Regression Trees(GBRT),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost)—to generate susceptibility maps.The Shapley additive explanation(SHAP)method was applied to quantify factor importance and explore their nonlinear effects.The results showed that:(1)CatBoost was the best-performing model(CA=0.938,AUC=0.980)in assessing landslide susceptibility,with altitude emerging as the most significant factor,followed by distance to roads and earthquake sites,precipitation,and slope;(2)the SHAP method revealed critical nonlinear thresholds,demonstrating that historical landslides were concentrated at mid-altitudes(1400-4000 m)and decreased markedly above 4000 m,with a parallel reduction in probability beyond 700 m from roads;and(3)landslide-prone areas,comprising 13%of the QTP,were concentrated in the southeastern and northeastern parts of the plateau.By integrating machine learning and SHAP analysis,this study revealed landslide hazard-prone areas and their driving factors,providing insights to support disaster management strategies and sustainable regional planning.展开更多
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a...Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability.展开更多
The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conduct...The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics.展开更多
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can...Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.展开更多
During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this...During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this paper,the electrochemical dissolution behavior of Ti-6.5Al-2Zr-1Mo-1V(TA15)titanium alloy at without particle impact,low(15°)and high(90°)angle particle impact was investigated,and the influence of Al_(2)O_(3)particles on ECM was systematically expounded.It was found that under the condition of no particle erosion,the surface of electrochemically processed titanium alloy had serious pitting corrosion due to the influence of the passivation film,and the surface roughness(Sa)of the local area reached 10.088μm.Under the condition of a high-impact angle(90°),due to the existence of strain hardening and particle embedding,only the edge of the surface is dissolved,while the central area is almost insoluble,with the surface roughness(S_(a))reaching 16.086μm.On the contrary,under the condition of a low-impact angle(15°),the machining efficiency and surface quality of the material were significantly improved due to the ploughing effect and galvanic corrosion,and the surface roughness(S_(a))reached 2.823μm.Based on these findings,the electrochemical dissolution model of TA15 titanium alloy under different particle erosion conditions was established.展开更多
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting...Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.展开更多
基金Supported by National Natural Science Foundation of China(NSFC)(Grant No.52130505)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD24E050005)+1 种基金Ningbo Key Scientific and Technological Project of China(Grant No.2022Z040)Academic Excellence Foundation of BUAA for PhD Students.
文摘Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications.
基金supported by National Natural Science Foundation of China (Grant No. 51075168)National Basic Research Program of China (973 Program, Grant No. 2011CB706803)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z149)
文摘The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.
基金Supported by National Key Technology R&D Program(No.2011BAG03B03)
文摘The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement
基金Supported by National Natural Science Foundation of China (Grant No.51975369)National Key Science and Technology Research Program of China (Grant No.2019ZX04027001)。
文摘Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.
文摘The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.
基金This project is supported by National Natural Science Foundation of China and the Eight-Five Year Plan National Key Projects. Ma
文摘Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by the National Natural Science Foundation of China(Grant Number 61573264).
文摘As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.
基金Newcastle University and EPSRC(Grant No.2020/21 DTP:ref.EP/T517914/1).
文摘Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the lowest temperature at which the wax begins to form.When crude oil cools to its WAT,wax crystals precipitate,forming deposits on pipelines as the solubility limit is reached.Therefore,WAT is a crucial quality assurance parameter,especially when dealing with modern fuel oil blends.In this study,we use machine learning via MATLAB’s Bioinformatics Toolbox to predict the WAT of marine fuel samples by correlating near-infrared spectral data with laboratory-measured values.The dataset provided by Intertek PLC-a total quality assurance provider of inspection,testing,and certification services-includes industrial data that is imbalanced,with a higher proportion of high-WAT samples compared to low-WAT samples.The objective is to predict marine fuel oil blends with unusually high WAT values(>35℃)without relying on time-consuming and irregular laboratory-based measurements.The results demonstrate that the developed model,based on the one-class support vector machine(OCSVM)algorithm,achieved a Recall of 96,accurately predicting 96%of fuel samples with WAT>35℃.For standard binary classification,the Recall was 85.7.The trained OCSVM model is expected to facilitate rapid and well-informed decision-making for logistics and storage when choosing fuel oils.
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
文摘A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine feet vibrations is presented.First,a generalized mathematical formulation is derived based on a state-space description which can be used for different kinds of models(1D,2D,and 3D models).It is shown that under special boundary conditions,the control parameters can be directly implemented into the stiffness and damping matrices of the system.Based on the generalized mathematical formulation,an example of a rotating machine—described by a 2D model—with journal bearings,flexible rotor,current-controlled electrodynamic actuators,steel frame foundation,and velocity feedback of the machine feet vibrations is presented where the effectiveness of the described active vibration control system is demonstrated.
基金supported by Scientific Research Project of the Education Department of Liaoning Province(No.JYTMS20230008)Scientific Research Project of Transportation Department of Liaoning Province(No.202320).
文摘The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine and leveraging the strong anti-interference and high sensitivity characteristics of vibration signals,we proposed a VMD-SDP-CNN(Variational mode decomposition-Symmetric dot pattern-Convolutional neural network)fault diagnosis method based on switch machine vibration signals.Firstly,the vibration signal of the switch machine was decomposed by VMD to obtain several intrinsic mode function(IMF)components.Secondly,the SDP method was employed to transform the decomposed IMF components into two-dimensional images,and the issue of one-dimensional signal recognition was transformed into the issue of two-dimensional image recognition.Finally,a CNN was used to realize the fault diagnosis of the switch machine.The experimental results showed that the recognition accuracy of the five actual working conditions of the switch machine using this method was superior to that of typical deep learning and machine learning methods,verifying its practicability and effectiveness.
基金supported by the National Key R&D Program of China(2022YFE0200400).
文摘The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.
基金supported in part by the National Key Research and Development Program of China (No. 2020YFA0710500)in part by the National Natural Science Foundation of China (NSFC)(No. 52277066)in part by the State Key Laboratory of Electrical Insulation and Power Equipment Foundation (No. EIPE23131)。
文摘With the continued advancement of deep electrification across various industries, the demand for higher power density in electric machines is steadily increasing. However, realizing high power density remains a significant technical challenge and has become a major bottleneck in machine development. The design of such machines is inherently constrained by the strong coupling among electromagnetic(EM), thermal, and mechanical domains, while systematic analyses of these challenges remain insufficient. This paper clarifies the interdependent relationships among these domains during the machine design process. It reviews key enabling strategies, including machine design based on advanced electromagnetic theory, innovative thermal management techniques, cutting-edge material advancements, and state-of-the-art manufacturing technologies, that collectively enhance the performance and feasibility of high power density machines(HPDMs). The insights provided aim to support the development of nextgeneration machine systems with higher power density, compact size, and robust, sustainable performance across a wide range of industrial and technological applications.
基金The National Key Research and Development Program of China,No.2023YFC3206601。
文摘Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility are key to mitigating disaster risk.This study integrated multi-source historical landslide data with 15 predictive factors and used several machine learning models—Random Forest(RF),Gradient Boosting Regression Trees(GBRT),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost)—to generate susceptibility maps.The Shapley additive explanation(SHAP)method was applied to quantify factor importance and explore their nonlinear effects.The results showed that:(1)CatBoost was the best-performing model(CA=0.938,AUC=0.980)in assessing landslide susceptibility,with altitude emerging as the most significant factor,followed by distance to roads and earthquake sites,precipitation,and slope;(2)the SHAP method revealed critical nonlinear thresholds,demonstrating that historical landslides were concentrated at mid-altitudes(1400-4000 m)and decreased markedly above 4000 m,with a parallel reduction in probability beyond 700 m from roads;and(3)landslide-prone areas,comprising 13%of the QTP,were concentrated in the southeastern and northeastern parts of the plateau.By integrating machine learning and SHAP analysis,this study revealed landslide hazard-prone areas and their driving factors,providing insights to support disaster management strategies and sustainable regional planning.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability.
基金the financial support of this work by the National Natural Science Foundation of China(No.52373093)Excellent Youth Found of Natural Science Foundation of Henan Province(No.242300421062)+1 种基金Central Plains Youth Top notch Talent Program of Henan Provincethe 111 project(No.D18023).
文摘The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics.
文摘Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.
基金supported by the National Natural Science Foundation of China(No.52175414)the Natural Science Foundation of Jiangsu Province of China(No.BK20220134)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.NE2023002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(No.KYCX24_0559)。
文摘During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this paper,the electrochemical dissolution behavior of Ti-6.5Al-2Zr-1Mo-1V(TA15)titanium alloy at without particle impact,low(15°)and high(90°)angle particle impact was investigated,and the influence of Al_(2)O_(3)particles on ECM was systematically expounded.It was found that under the condition of no particle erosion,the surface of electrochemically processed titanium alloy had serious pitting corrosion due to the influence of the passivation film,and the surface roughness(Sa)of the local area reached 10.088μm.Under the condition of a high-impact angle(90°),due to the existence of strain hardening and particle embedding,only the edge of the surface is dissolved,while the central area is almost insoluble,with the surface roughness(S_(a))reaching 16.086μm.On the contrary,under the condition of a low-impact angle(15°),the machining efficiency and surface quality of the material were significantly improved due to the ploughing effect and galvanic corrosion,and the surface roughness(S_(a))reached 2.823μm.Based on these findings,the electrochemical dissolution model of TA15 titanium alloy under different particle erosion conditions was established.
基金National Key Research and Development Program of China,No.2023YFC3006704National Natural Science Foundation of China,No.42171047CAS-CSIRO Partnership Joint Project of 2024,No.177GJHZ2023097MI。
文摘Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.