The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this r...Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations.展开更多
Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in un...Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in unit commitment(UC)problems.However,the typical SAA requires large Monte Carlo(MC)samples to ensure the solution accuracy,which results in large-scale mixed-integer programming(MIP)problems.To address this problem,this paper presents the partial sample average approximation(PSAA)to deal with JCCs in UC problems in multi-area power systems with wind power.PSAA partitions the stochastic variables and historical dataset,and the historical dataset is then partitioned into non-sampled and sampled sets.When approximating the expectation of stochastic variables,PSAA replaces the big-M formulation with the cumulative distribution function of the non-sampled set,thus preventing binary variables from being introduced.Finally,PSAA can transform the chance constraints to deterministic constraints with only continuous variables,avoiding the large-scale MIP problem caused by SAA.Simulation results demonstrate that PSAA has significant advantages in solution accuracy and efficiency compared with other existing methods including traditional SAA,SAA with improved big-M,SAA with Latin hypercube sampling(LHS),and the multi-stage robust optimization methods.展开更多
As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given m...As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.展开更多
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ...This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.展开更多
Over the last few years, lots of attentions have been given to the demand response(DR) for the frequency control. DR can be incorporated with traditional frequency control method and enhance the stability of the syste...Over the last few years, lots of attentions have been given to the demand response(DR) for the frequency control. DR can be incorporated with traditional frequency control method and enhance the stability of the system. In this paper, the frequency control strategy of DR for a multiarea power system is specially designed. In order to quickly stabilize the frequency of different areas, the tie-line power is adopted as the additional input signal of DR. To get the optimal parameters of the control system, the frequency control problem is formulated as a multi-objective optimization problem, and the parameters such as the integral gains of secondary frequency control, the frequency bias parameters, and coefficients of DR are optimized. Numerical results verify the effectiveness of the proposed method.展开更多
Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind p...Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simula- tion results advocates the justification of control scheme over other schemes.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship...Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.展开更多
The release of a new artificial intelligence(AI)model,ironically,evokes a biblical memory.What has transpired in the past few days echoes the biblical story of David versus Goliath,in which the massive and wellarmed G...The release of a new artificial intelligence(AI)model,ironically,evokes a biblical memory.What has transpired in the past few days echoes the biblical story of David versus Goliath,in which the massive and wellarmed Goliath is defeated by the comparatively puny David,who comes to the battle with only his staff and sling.展开更多
数据可视化的完整流程包括数据采集、数据处理、数据分析及数据可视化4个环节。该文展示使用Power BI Desktop对豆瓣电影TOP250评分数据,进行多页面Web获取、处理及可视化展示的应用案例。首先,使用Power BI Desktop的M语言创建查询函数...数据可视化的完整流程包括数据采集、数据处理、数据分析及数据可视化4个环节。该文展示使用Power BI Desktop对豆瓣电影TOP250评分数据,进行多页面Web获取、处理及可视化展示的应用案例。首先,使用Power BI Desktop的M语言创建查询函数,通过添加列选择调用自定义函数,实现多页面Web数据源的连接与获取。接着,通过数据转换功能执行字段提取与数据类型转换,最终得到包含电影排名、名称、评分和上映年份等关键字段的数据表。最后,基于250部电影的评分数据创建数据可视化内容,包括柱形图、电影得分切片器及影片信息矩阵表格,根据电影评分数据为柱形图设置颜色递进效果,对切片器和影片信息矩阵表格添加联动效应,达到交互式的效果。展开更多
Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challen...Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.展开更多
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
文摘Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations.
基金supported by the National Natural Science Foundation of China(No.51977042)。
文摘Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in unit commitment(UC)problems.However,the typical SAA requires large Monte Carlo(MC)samples to ensure the solution accuracy,which results in large-scale mixed-integer programming(MIP)problems.To address this problem,this paper presents the partial sample average approximation(PSAA)to deal with JCCs in UC problems in multi-area power systems with wind power.PSAA partitions the stochastic variables and historical dataset,and the historical dataset is then partitioned into non-sampled and sampled sets.When approximating the expectation of stochastic variables,PSAA replaces the big-M formulation with the cumulative distribution function of the non-sampled set,thus preventing binary variables from being introduced.Finally,PSAA can transform the chance constraints to deterministic constraints with only continuous variables,avoiding the large-scale MIP problem caused by SAA.Simulation results demonstrate that PSAA has significant advantages in solution accuracy and efficiency compared with other existing methods including traditional SAA,SAA with improved big-M,SAA with Latin hypercube sampling(LHS),and the multi-stage robust optimization methods.
文摘As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.
文摘This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.
基金supported in part by the University Science Research Project of Jiangsu Province (No. 16KJB470009)
文摘Over the last few years, lots of attentions have been given to the demand response(DR) for the frequency control. DR can be incorporated with traditional frequency control method and enhance the stability of the system. In this paper, the frequency control strategy of DR for a multiarea power system is specially designed. In order to quickly stabilize the frequency of different areas, the tie-line power is adopted as the additional input signal of DR. To get the optimal parameters of the control system, the frequency control problem is formulated as a multi-objective optimization problem, and the parameters such as the integral gains of secondary frequency control, the frequency bias parameters, and coefficients of DR are optimized. Numerical results verify the effectiveness of the proposed method.
文摘Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simula- tion results advocates the justification of control scheme over other schemes.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金funded by the Inner Mongolia Nature Foundation Project,Project number:2023JQ04.
文摘Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.
文摘The release of a new artificial intelligence(AI)model,ironically,evokes a biblical memory.What has transpired in the past few days echoes the biblical story of David versus Goliath,in which the massive and wellarmed Goliath is defeated by the comparatively puny David,who comes to the battle with only his staff and sling.
文摘数据可视化的完整流程包括数据采集、数据处理、数据分析及数据可视化4个环节。该文展示使用Power BI Desktop对豆瓣电影TOP250评分数据,进行多页面Web获取、处理及可视化展示的应用案例。首先,使用Power BI Desktop的M语言创建查询函数,通过添加列选择调用自定义函数,实现多页面Web数据源的连接与获取。接着,通过数据转换功能执行字段提取与数据类型转换,最终得到包含电影排名、名称、评分和上映年份等关键字段的数据表。最后,基于250部电影的评分数据创建数据可视化内容,包括柱形图、电影得分切片器及影片信息矩阵表格,根据电影评分数据为柱形图设置颜色递进效果,对切片器和影片信息矩阵表格添加联动效应,达到交互式的效果。
基金supported by the Science and Technology Project of Jiangsu Coastal Power Infrastructure Intelligent Engineering Research Center“Photovoltaic Power Prediction System Driven by Deep Learning and Multi-Source Data Fusion”(F2024-5044).
文摘Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.