This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achiev...The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency.展开更多
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut...Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.展开更多
This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-orde...This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-ord...This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms.展开更多
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s...This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state d...This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–d...In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem o...Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem of heterogeneous multi-agent systems with time-varying communication and input delays. By constructing Lyapunov-Krasovkii functional, sufficient consensus conditions in linear matrix inequality(LMI) form are obtained for the system under fixed interconnection topology. Moreover, consensus conditions are also obtained for the heterogeneous systems under switching topologies with time delays. Simulation examples are given to illustrate effectiveness of the results.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl...The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.展开更多
The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizin...The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金Supported by National Natural Science Foundation of China(Grant Nos.52225212,52272418,U22A20100)National Key Research and Development Program of China(Grant No.2022YFB2503302).
文摘The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency.
基金supported in part by the National Natural Science Foundation of China under Grant 6237319in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX230479.
文摘Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.
基金National Natural Science Foundation of China(No.12071370)。
文摘This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project2024 Yancheng Key Research and Development Plan(Social Development)projects,“Research and Application of Multi Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment”。
文摘This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms.
文摘This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62473135 and 62173121)。
文摘This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3303900in part by the National Natural Science Foundation of China under Grants 62103277 and 62025305。
文摘In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金supported by National Natural Science Foundation of China(Nos.61104092,61134007 and 61203147)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem of heterogeneous multi-agent systems with time-varying communication and input delays. By constructing Lyapunov-Krasovkii functional, sufficient consensus conditions in linear matrix inequality(LMI) form are obtained for the system under fixed interconnection topology. Moreover, consensus conditions are also obtained for the heterogeneous systems under switching topologies with time delays. Simulation examples are given to illustrate effectiveness of the results.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.
基金partially supported by the Natural Sciencesand Engineering Research Council(NSERC)of Canada through the NSERC Discovery(RGPIN-2016-04988)。
文摘The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.