期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
An Asynchronous Genetic Algorithm for Multi-agent Path Planning Inspired by Biomimicry
1
作者 Bin Liu Shikai Jin +3 位作者 Yuzhu Li Zhuo Wang Donglai Zhao Wenjie Ge 《Journal of Bionic Engineering》 2025年第2期851-865,共15页
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ... To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms. 展开更多
关键词 multi-agent path planning Asynchronous genetic algorithm Equal-size clustering genetic algorithm
在线阅读 下载PDF
A Multi-Agent Approach for Solving Traveling Salesman Problem
2
作者 ZHOU Tiejun TAN Yihong XING Lining 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1104-1108,共5页
The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony sys... The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony system to solve the TSP. Three kinds of agents with different function were designed in the multi-agent architecture proposed by this paper. The first kind of agent is ant colony optimization agent and its function is generating the new solution continuously. The second kind of agent is selection agent, crossover agent and mutation agent, their function is optimizing the current solutions group. The third kind of agent is fast local searching agent and its function is optimizing the best solution from the beginning of the trial. At the end of this paper, the experimental results have shown that the proposed hybrid ap proach has good performance with respect to the quality of solution and the speed of computation. 展开更多
关键词 traveling salesman problem multi-agent approach genetic algorithm ant colony system
在线阅读 下载PDF
Adaptive Co-evolution Model for Multi-agent System
3
作者 张向锋 丁永生 梁朝霞 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期123-126,共4页
It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics,... It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics, are usually used to solve these problems. Based on learning and evolution mechanisms of the biological systems, an adaptive co-evolution model was proposed in this paper. Inner-population, inter-population, and community learning operators were presented. The adaptive co-evolution algorithm (ACEA) was designed in detail. Some simulation experiments were done to evaluate the performance of the ACEA. The results show that the ACEA is more effective and feasible than the genetic algorithm to solve the optimization problems. 展开更多
关键词 adaptive co-evolution algorithm multi-agent system LEARNING EVOLUTION genetic algorithm
在线阅读 下载PDF
基于MAGA-PPC模型的专项资金绩效综合评价——以国内多省市新冠疫情防控专项资金为例
4
作者 贺媛 《特区经济》 2025年第12期94-97,共4页
针对专项资金涉及金额大、使用范围广等特点,将投影寻踪方法与多智能体遗传算法、聚类算法相结合建立专项资金绩效综合评价投影寻踪聚类模型(MAGA-PPC),并通过分析指标的相关性求得最优解。以国内部分省份的部分市县或者市辖区新冠疫情... 针对专项资金涉及金额大、使用范围广等特点,将投影寻踪方法与多智能体遗传算法、聚类算法相结合建立专项资金绩效综合评价投影寻踪聚类模型(MAGA-PPC),并通过分析指标的相关性求得最优解。以国内部分省份的部分市县或者市辖区新冠疫情防控专项资金为例进行研究,发现MAGA-PPC在专项资金绩效综合评价中有较好的实用性。根据实证结果,提出提高专项资金绩效水平的相关措施以指导实践工作。 展开更多
关键词 多智能体遗传算法(maga) 投影寻踪聚类模型(PPC) 专项资金 绩效综合评价 新冠疫情防控
原文传递
基于MAGA一次包络TI蜗杆传动参数优化 被引量:9
5
作者 段路茜 孙月海 +1 位作者 王树人 张策 《中国机械工程》 EI CAS CSCD 北大核心 2008年第5期531-534,共4页
以螺旋角、法向模数及蜗轮齿宽为优化变量,采用改进的自适应遗传算法(MAGA)对一次包络TI蜗杆传动进行多目标优化设计。为提高TI蜗杆承载能力、获得良好的蜗杆传动啮合性能,以接触线方向和相对速度方向的夹角、诱导法曲率为优化目标。优... 以螺旋角、法向模数及蜗轮齿宽为优化变量,采用改进的自适应遗传算法(MAGA)对一次包络TI蜗杆传动进行多目标优化设计。为提高TI蜗杆承载能力、获得良好的蜗杆传动啮合性能,以接触线方向和相对速度方向的夹角、诱导法曲率为优化目标。优化结果表明:采用MAGA进行一次包络TI蜗杆传动参数优化是行之有效的。和传统优化方法相比,MAGA所得优化结果更加合理。 展开更多
关键词 改进的自适应遗传算法(maga) TI蜗杆传动 参数优化 啮合性能
在线阅读 下载PDF
基于MAGA-PPC模型的水资源配置方案综合评价 被引量:9
6
作者 王庆杰 岳春芳 李艺珍 《水资源与水工程学报》 CSCD 2018年第3期105-110,共6页
针对水资源配置方案的多目标性、模糊性和不确定性的特点,采用投影寻踪方法将高维数据投影到二维空间,结合聚类算法和多智能体遗传算法建立水资源配置方案综合评价投影寻踪聚类模型(MAGA-PPC),并通过指标的相关性分析验证模型的有效性... 针对水资源配置方案的多目标性、模糊性和不确定性的特点,采用投影寻踪方法将高维数据投影到二维空间,结合聚类算法和多智能体遗传算法建立水资源配置方案综合评价投影寻踪聚类模型(MAGA-PPC),并通过指标的相关性分析验证模型的有效性确保求得最优解。以陕西省引汉济渭受水区为例进行研究。结果表明:MAGA-PPC能够较为系统地量化各方案在社会、经济、生态和资源等方面的综合差异,其评价结果符合研究区水资源开发利用的实际情况,MAGA-PPC在水资源合理配置方案评价中有较好的实用性。 展开更多
关键词 水资源配置方案 综合评价 投影寻踪聚类模型(PPC) 多智能体遗传算法(maga)
在线阅读 下载PDF
Combined forecast method of HMM and LS-SVM about electronic equipment state based on MAGA 被引量:1
7
作者 Jianzhong Zhao Jianqiu Deng +1 位作者 Wen Ye Xiaofeng Lü 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期730-738,共9页
For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machin... For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability. 展开更多
关键词 parameter estimation hidden Markov model(HMM) least square support vector machine(LS-SVM) multi-agent genetic algorithmmaga state forecast
在线阅读 下载PDF
基于优化k均值建模的运动目标检测算法 被引量:17
8
作者 蔡娟 李东新 《国外电子测量技术》 2016年第12期20-23,共4页
在对运动目标检测构建出精准的背景模型的方法中,k均值聚类算法是一种快速且简单有效的划分法,对于大型数据集,可伸缩且高效k均值聚类算法被广泛应用。但是,该算法会对初始聚类中心的变化表现得敏感,聚类中心的变化常会使得算法误差较... 在对运动目标检测构建出精准的背景模型的方法中,k均值聚类算法是一种快速且简单有效的划分法,对于大型数据集,可伸缩且高效k均值聚类算法被广泛应用。但是,该算法会对初始聚类中心的变化表现得敏感,聚类中心的变化常会使得算法误差较大。本文将介绍一种对初始聚类中心选择改进法:利用遗传算法能高效地全局搜索出最优解这一特点,克服了k均值聚类算法易陷入局部最优解的缺点。改进后的遗传算法MAGA能快速地提取出最优初始聚类中心,通过实验仿真总结出基于MAGA的k均值聚类建模精确度比较高,对检测小而多的运动目标存在很大优势。 展开更多
关键词 maga遗传算法 K均值聚类算法 运动目标检测 聚类中心
在线阅读 下载PDF
基于改进的自适应遗传算法的GIS服务组合研究
9
作者 柳玲 冉唯 许超超 《计算机科学》 CSCD 北大核心 2012年第B06期416-418,共3页
针对当前GIS系统中集成应用模型时存在的数据和功能冗余、模型难以复用等问题,将GIS应用模型分解为子模型,与GIS功能一起,以服务的方式提供给用户,并对这些GIS服务定义服务质量(QoS);最后,提出了一种基于改进的自适应遗传算法(MAGA)的... 针对当前GIS系统中集成应用模型时存在的数据和功能冗余、模型难以复用等问题,将GIS应用模型分解为子模型,与GIS功能一起,以服务的方式提供给用户,并对这些GIS服务定义服务质量(QoS);最后,提出了一种基于改进的自适应遗传算法(MAGA)的服务组合方法,以实现GIS服务组合的全局优化。 展开更多
关键词 GIS服务 QOS 改进的自适应遗传算法(maga)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部