期刊文献+
共找到1,672篇文章
< 1 2 84 >
每页显示 20 50 100
Policy Network-Based Dual-Agent Deep Reinforcement Learning for Multi-Resource Task Offloading in Multi-Access Edge Cloud Networks 被引量:1
1
作者 Feng Chuan Zhang Xu +2 位作者 Han Pengchao Ma Tianchun Gong Xiaoxue 《China Communications》 SCIE CSCD 2024年第4期53-73,共21页
The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC n... The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC networks can support a wide range of applications. MEC networks can also leverage various types of resources, including computation resources, network resources, radio resources,and location-based resources, to provide multidimensional resources for intelligent applications in 5/6G.However, tasks generated by users often consist of multiple subtasks that require different types of resources. It is a challenging problem to offload multiresource task requests to the edge cloud aiming at maximizing benefits due to the heterogeneity of resources provided by devices. To address this issue,we mathematically model the task requests with multiple subtasks. Then, the problem of task offloading of multi-resource task requests is proved to be NP-hard. Furthermore, we propose a novel Dual-Agent Deep Reinforcement Learning algorithm with Node First and Link features(NF_L_DA_DRL) based on the policy network, to optimize the benefits generated by offloading multi-resource task requests in MEC networks. Finally, simulation results show that the proposed algorithm can effectively improve the benefit of task offloading with higher resource utilization compared with baseline algorithms. 展开更多
关键词 benefit maximization deep reinforcement learning multi-access edge cloud task offloading
在线阅读 下载PDF
Multi-access performance of DS UWB systemunder indoor dense multi-path channel
2
作者 樊祥宁 倪剑强 毕光国 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期393-397,共5页
The performance of multi-user code to direct spreading bi-phase shift keying (DS-BPSK) direct impulse ultra wideband (UWB) systems under indoor multi-user and multi-path environment is analyzed and simulated. The ... The performance of multi-user code to direct spreading bi-phase shift keying (DS-BPSK) direct impulse ultra wideband (UWB) systems under indoor multi-user and multi-path environment is analyzed and simulated. The system output signals with Rake receiver are derived, then a simple and practical code selection scheme is given; i. e., with a large occupation to empty ratio of the repeating pulses, directly choosing those random or pseudo-random user codes with enough length and good co-relative orthogonal features will make the performance of DS-BPSK approximate the optimum and, so there is no need to carefully design the code or its type. The system multi-access performances are simulated using Gold sequence and PN codes as multi-user codes under CMI-CM4 multi-path channels. Simulation results prove that the proposed scheme is feasible. 展开更多
关键词 ultra wideband multi-access MULTI-PATH Gold code direct sequence RAKE
在线阅读 下载PDF
Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network 被引量:19
3
作者 Ziying Wu Danfeng Yan 《China Communications》 SCIE CSCD 2021年第11期26-41,共16页
Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers... Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies. 展开更多
关键词 multi-access edge computing computation offloading 5G vehicle-aware deep reinforcement learning deep q-network
在线阅读 下载PDF
Intelligent Immunity Based Security Defense System for Multi-Access Edge Computing Network 被引量:3
4
作者 Chengcheng Zhou Yanping Yu +1 位作者 Shengsong Yang Haitao Xu 《China Communications》 SCIE CSCD 2021年第1期100-107,共8页
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p... In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach. 展开更多
关键词 intelligent immunity security defense multi-access edge computing network security
在线阅读 下载PDF
Integration of Communication and Computing in Blockchain-Enabled Multi-Access Edge Computing Systems 被引量:2
5
作者 Zhonghua Zhang Jie Feng +2 位作者 Qingqi Pei Le Wang Lichuan Ma 《China Communications》 SCIE CSCD 2021年第12期297-314,共18页
Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and managemen... Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and management mechanism,blockchain technology achieves the reliable transmis-sion of data and value.While as a new computing paradigm,multi-access edge computing enables the high-frequency interaction and real-time transmission of data.The integration of communication and com-puting in blockchain-enabled multi-access edge com-puting networks has been studied without a systemat-ical view.In the survey,we focus on the integration of communication and computing,explores the mu-tual empowerment and mutual promotion effects be-tween the blockchain and MEC,and introduces the resource integration architecture of blockchain and multi-access edge computing.Then,the paper sum-marizes the applications of the resource integration ar-chitecture,resource management,data sharing,incen-tive mechanism,and consensus mechanism,and ana-lyzes corresponding applications in real-world scenar-ios.Finally,future challenges and potentially promis-ing research directions are discussed and present in de-tail. 展开更多
关键词 blockchain multi-access edge computing mutual empowerment network architecture
在线阅读 下载PDF
DQN-Based Proactive Trajectory Planning of UAVs in Multi-Access Edge Computing 被引量:2
6
作者 Adil Khan Jinling Zhang +3 位作者 Shabeer Ahmad Saifullah Memon Babar Hayat Ahsan Rafiq 《Computers, Materials & Continua》 SCIE EI 2023年第3期4685-4702,共18页
The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays... The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays,Unmanned Aerial Vehicles(UAVs)are a significant part of the mobile network due to their continuously growing use in various applications.For better coverage,cost-effective,and seamless service connectivity and provisioning,UAVs have emerged as the best choice for telco operators.UAVs can be used as flying base stations,edge servers,and relay nodes in mobile networks.On the other side,Multi-access EdgeComputing(MEC)technology also emerged in the 5G network to provide a better quality of experience(QoE)to users with different QoS requirements.However,UAVs in a mobile network for coverage enhancement and better QoS face several challenges such as trajectory designing,path planning,optimization,QoS assurance,mobilitymanagement,etc.The efficient and proactive path planning and optimization in a highly dynamic environment containing buildings and obstacles are challenging.So,an automated Artificial Intelligence(AI)enabled QoSaware solution is needed for trajectory planning and optimization.Therefore,this work introduces a well-designed AI and MEC-enabled architecture for a UAVs-assisted future network.It has an efficient Deep Reinforcement Learning(DRL)algorithm for real-time and proactive trajectory planning and optimization.It also fulfills QoS-aware service provisioning.A greedypolicy approach is used to maximize the long-term reward for serving more users withQoS.Simulation results reveal the superiority of the proposed DRL mechanism for energy-efficient and QoS-aware trajectory planning over the existing models. 展开更多
关键词 multi-access edge computing UAVS trajectory planning QoS assurance reinforcement learning deep Q network
在线阅读 下载PDF
A Review in the Core Technologies of 5G: Device-to-Device Communication, Multi-Access Edge Computing and Network Function Virtualization 被引量:2
7
作者 Ruixuan Tu Ruxun Xiang +1 位作者 Yang Xu Yihan Mei 《International Journal of Communications, Network and System Sciences》 2019年第9期125-150,共26页
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ... 5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances. 展开更多
关键词 5th Generation Network VIRTUALIZATION Device-To-Device COMMUNICATION Base STATION Direct COMMUNICATION INTERFERENCE multi-access EDGE COMPUTING Mobile EDGE COMPUTING
在线阅读 下载PDF
New strategies for collision resolution of multi-access channel
8
作者 凌永发 孟德宇 张继洁 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期56-59,共4页
The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve... The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve the capability of the truncated binary exponential back-off algorithm.In the new strategies,the sizes of the initial window size or the operating window sizes are adjusted dynamically,which always bring a significant improvement for the self-adaptability of the original algorithm.A series of experiments are simulated and the results verify that the new strategies can make the implementation more stable and effective than the original algorithm. 展开更多
关键词 back-off algorithm collision resolution multi-access channel
在线阅读 下载PDF
A Random Multi-Access Method for Data Services in CDMA Cellular System
9
作者 李振 尤肖虎 《Journal of Southeast University(English Edition)》 EI CAS 1997年第2期8-12,共5页
ARandomMultiAccessMethodforDataServicesinCDMACelularSystemLiZhen(李振)YouXiaohu(尤肖虎)(NationalMobileCommunicat... ARandomMultiAccessMethodforDataServicesinCDMACelularSystemLiZhen(李振)YouXiaohu(尤肖虎)(NationalMobileCommunicationsResearchLabor... 展开更多
关键词 multiple ACCESS CODE DIVISION multi ACCESS mobile communication
在线阅读 下载PDF
巨星座跨域多尺度安全传输与接入 被引量:1
10
作者 司江勃 李赞 +3 位作者 王丹洋 刘朋朋 赵浩钦 黄睿 《航天技术与工程学报》 2025年第1期77-85,共9页
针对巨星座通联面临频轨资源稀缺、节点高动态、传输距离跨尺度等挑战,传统无线空口技术较难满足高安全、高可靠、低时延通联的通信需求,研究巨星座跨域多尺度安全传输与接入技术,遵循“感知环境-利用环境-适应环境”的研究思路,提出了... 针对巨星座通联面临频轨资源稀缺、节点高动态、传输距离跨尺度等挑战,传统无线空口技术较难满足高安全、高可靠、低时延通联的通信需求,研究巨星座跨域多尺度安全传输与接入技术,遵循“感知环境-利用环境-适应环境”的研究思路,提出了电磁环境认知驱动传输与接入机制,采用电磁地图知识构建立体电磁态势图,深度挖掘不同维域可用通联资源,在此基础上通过统计预先规划与实时动态操控双驱动,利用自主决策接入方式,实现高动态、多尺度、复杂通联环境下的时/空/频/能等碎片化通信资源高效利用,确保信息高安全传输,进而保障巨星座网络的安全可靠连接,推动天基信息系统支援能力建设。 展开更多
关键词 巨星座通联 电磁安全 多址接入 安全传输
在线阅读 下载PDF
基于空中计算CoMAC架构的不同计算场景叠加符号判决算法
11
作者 秦晓卫 周子涵 陈力 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期61-70,共10页
本文研究不同场景下基于空中计算的多址信道计算(CoMAC)架构的覆盖符号决策算法。首先,从理论上分析了XOR、ADD、MOD三种场景中加性高斯白噪声(AWGN)多址接入信道下叠加符号的概率密度分布,提出了一种基于先验概率的最优门限判决策略。... 本文研究不同场景下基于空中计算的多址信道计算(CoMAC)架构的覆盖符号决策算法。首先,从理论上分析了XOR、ADD、MOD三种场景中加性高斯白噪声(AWGN)多址接入信道下叠加符号的概率密度分布,提出了一种基于先验概率的最优门限判决策略。其次,推导了系统最优门限及对应误码率的理论表达式。最后,通过仿真验证了不同信噪比、传感器节点个数及先验概率对于该门限判决方案的鲁棒性和可靠性的影响。与通信计算相分离的传统方案相比,空中计算判决方案具有更好的检测性能,为多址接入信道下的信号识别提供了新的参考方案。 展开更多
关键词 空中计算 多址接入信道 最优门限判决 检测性能
在线阅读 下载PDF
面向大规模多接入边缘计算场景的任务卸载算法
12
作者 卢先领 李德康 《电子与信息学报》 北大核心 2025年第1期116-127,共12页
基于单智能体强化学习的任务卸载算法在解决大规模多接入边缘计算(MEC)系统任务卸载时,存在智能体之间相互影响,策略退化的问题。而以多智能体深度确定性策略梯度(MADDPG)为代表的传统多智能体算法的联合动作空间维度随着系统内智能体... 基于单智能体强化学习的任务卸载算法在解决大规模多接入边缘计算(MEC)系统任务卸载时,存在智能体之间相互影响,策略退化的问题。而以多智能体深度确定性策略梯度(MADDPG)为代表的传统多智能体算法的联合动作空间维度随着系统内智能体的数量增加而成比例增加,导致系统扩展性变差。为解决以上问题,该文将大规模多接入边缘计算任务卸载问题,描述为部分可观测马尔可夫决策过程(POMDP),提出基于平均场多智能体的任务卸载算法。通过引入长短期记忆网络(LSTM)解决局部观测问题,引入平均场近似理论降低联合动作空间维度。仿真结果表明,所提算法在任务时延与任务掉线率上的性能优于单智能体任务卸载算法,并且在降低联合动作空间的维度情况下,任务时延与任务掉线率上的性能与MADDPG一致。 展开更多
关键词 多接入边缘计算 任务卸载 强化学习 多智能体算法 平均场近似理论
在线阅读 下载PDF
基于多权威属性基加密的智能电网数据安全共享模型
13
作者 张新有 刘庆夫 +1 位作者 冯力 邢焕来 《信息网络安全》 北大核心 2025年第1期98-109,共12页
智能电网通过共享把数据的潜在价值转化为实际利益,因此保障数据共享的安全至关重要。文章面向智能电网场景中数据的细粒度访问控制,提出一种基于多权威属性基加密(MA-ABE)的数据安全共享模型。文章使用线性整数秘密共享方案(LSSS)构建M... 智能电网通过共享把数据的潜在价值转化为实际利益,因此保障数据共享的安全至关重要。文章面向智能电网场景中数据的细粒度访问控制,提出一种基于多权威属性基加密(MA-ABE)的数据安全共享模型。文章使用线性整数秘密共享方案(LSSS)构建MA-ABE方案,实现一个属性可被多个权威监控,多个权威可联合生成用户私钥,使得方案可抵抗针对属性权威机构(AA)的合谋攻击。将每个权威与一条区块链关联,并利用中继技术实现多链协同,保障数据跨域共享灵活性。通过安全规约证明了所提MA-ABE方案在基于判定性双线Diffie-Hellman假设的前提下满足选择明文攻击下的不可区分性(IND-CPA)安全性。文章通过理论分析和对比实验说明了MA-ABE方案在存储、计算以及功能性方面均有一定的优势。仿真结果表明,模型的吞吐量和时延满足了智能电网数据共享的需求,能够在保证智能电网数据共享性能的情况下,适用于智能电网的细粒度访问控制。 展开更多
关键词 智能电网 多权威属性基加密 多链协同 访问控制 数据共享
在线阅读 下载PDF
Edge Coalition Construction Based on a Novel Market Equilibrium Price
14
作者 Wang Xiaolong Dang Jianwu +3 位作者 Zhao Shuxu Wang Yangping Zhang Zhanping Hao Zhanjun 《China Communications》 2025年第3期288-305,共18页
The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single e... The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single edge infrastructure provider(EIP)may not be sufficient to handle the data traffic generated by these services.Most of the existing work addressed the computing resource shortage problem by optimizing tasks schedule,whereas others overcome such issue by placing computing resources on demand.However,when considering a multiple EIPs scenario,an urgent challenge is how to generate a coalition structure to maximize each EIP’s gain with a suitable price for computing resource block corresponding to a container.To this end,we design a scheme of EIPs collaboration with a market price for containers under a scenario that considers a collection of service providers(SPs)with different budgets and several EIPs distributed in geographical locations.First,we bring in the net profit market price model to generate a more reasonable equilibrium price and select the optimal EIPs for each SP by a convex program.Then we use a mathematical model to maximize EIP’s profits and form stable coalitions between EIPs by a distributed coalition formation algorithm.Numerical results demonstrate that our proposed collaborative scheme among EIPs enhances EIPs’gain and increases users’surplus. 展开更多
关键词 coalition formation computing resource block market equilibrium multi-access edge computing SURPLUS
在线阅读 下载PDF
A knowledge graph-based reinforcement learning approach for cooperative caching in MEC-enabled heterogeneous networks
15
作者 Dan Wang Yalu Bai Bin Song 《Digital Communications and Networks》 2025年第4期1236-1244,共9页
Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of conge... Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay. 展开更多
关键词 multi-access edge computing Cooperative caching Resource allocation Knowledge graph Reinforcement learning
在线阅读 下载PDF
Priority-Aware Resource Allocation for VNF Deployment in Service Function Chains Based on Graph Reinforcement Learning
16
作者 Seyha Ros Seungwoo Kang +3 位作者 Taikuong Iv Inseok Song Prohim Tam Seokhoon Kim 《Computers, Materials & Continua》 2025年第5期1649-1665,共17页
Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization... Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications. 展开更多
关键词 Deep reinforcement learning graph neural network multi-access edge computing network functions virtualization software-defined networking
在线阅读 下载PDF
MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks
17
作者 Ru Hao Chi Xu Jing Liu 《Computers, Materials & Continua》 2025年第2期3203-3222,共20页
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource... Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption. 展开更多
关键词 Industrial wireless networks(IWNs) multi-access edge computing(MEC) non-orthogonal multiple access(NOMA) task offloading resource allocation
在线阅读 下载PDF
云医疗环境下策略可更新的多权威属性基安全方案
18
作者 巫朝霞 蒋旭 《计算机应用研究》 北大核心 2025年第6期1868-1872,共5页
在云医疗环境下,存储在云中的医疗数据存在隐私易泄露、访问策略更新开销大等问题。针对以上问题,提出一种策略可更新的多权威属性基安全方案。所提方案由医院、研究所等形成的多权威机构管理互不相交的属性集,使用密文策略属性基方案... 在云医疗环境下,存储在云中的医疗数据存在隐私易泄露、访问策略更新开销大等问题。针对以上问题,提出一种策略可更新的多权威属性基安全方案。所提方案由医院、研究所等形成的多权威机构管理互不相交的属性集,使用密文策略属性基方案加密数据,实现了云中医疗数据的细粒度访问和安全共享,同时引入策略更新密钥有效实现访问策略更新且策略更新方面的开销较低。安全分析和实验结果表明,该方案具有密文不可区分安全性和抗合谋攻击安全性,并在加解密和策略更新方面时间开销较低,有效实现了云中医疗数据的安全存储和策略动态更新。 展开更多
关键词 属性基加密 访问控制 多权威机构 策略更新
在线阅读 下载PDF
格上抗合谋多权威属性基加密方案
19
作者 赵宗渠 马少骅 +1 位作者 郭孟昊 王乃锋 《西安电子科技大学学报》 北大核心 2025年第4期165-179,共15页
属性基加密(ABE)提供了灵活的访问控制,但密钥完全由中央权威生成和签发,导致中央权威负荷过重且易受攻击。一旦中央密钥泄露,将会带来严重的安全后果。为解决此问题,多权威属性基加密(MA-ABE)允许多个授权机构独立、分散地分发各自所... 属性基加密(ABE)提供了灵活的访问控制,但密钥完全由中央权威生成和签发,导致中央权威负荷过重且易受攻击。一旦中央密钥泄露,将会带来严重的安全后果。为解决此问题,多权威属性基加密(MA-ABE)允许多个授权机构独立、分散地分发各自所管属性下的密钥,即使单个权威密钥泄露,整个系统的安全性仍能得到保障。与传统ABE相同,MA-ABE仍面临着任意非授权用户的合谋问题,甚至一些权威可能被破坏并与对手勾结。针对这些挑战,提出了一种新型格上MA-ABE方案,通过张量伪随机技术实现了抗任意合谋,避免了其他伪随机函数或线性秘密共享技术造成噪声的指数增长。该方案基于回避型容错学习假设(Evasive LWE),移除安全证明中对随机预言机模型的依赖,在不需要格上伪随机函数或其他非标准假设的情况下,实现了静态安全。方案具有多项式级模数,提高了系统的模运算效率,同时密文更加紧凑,降低了通信开销。 展开更多
关键词 访问控制 多权威属性基加密 抗合谋 容错学习 格理论
在线阅读 下载PDF
基于MHA-MAD的近海光无线融合接入网络部署算法
20
作者 李学华 郗童 +1 位作者 王鑫 黄翔 《光通信研究》 北大核心 2025年第4期79-85,共7页
【目的】随着近海区域业务量的快速增长,带宽需求呈现出指数级增长趋势,承载业务的第五代移动通信技术(5G)及后5G(B5G)下一代无线接入网络(NG-RAN)资源即将枯竭,波分复用无源光网络(WDM-PON)因其高带宽等优势,成为支持5G/B5G NG-RAN的... 【目的】随着近海区域业务量的快速增长,带宽需求呈现出指数级增长趋势,承载业务的第五代移动通信技术(5G)及后5G(B5G)下一代无线接入网络(NG-RAN)资源即将枯竭,波分复用无源光网络(WDM-PON)因其高带宽等优势,成为支持5G/B5G NG-RAN的有效承载方案。然而,近海复杂多变的环境为WDM-PON的网络部署带来了严峻挑战,如高昂的部署成本、大规模的路径损耗以及恶劣的水下环境等,亟需通过优化网络部署策略降低成本、风险和传输损耗等,以构建适应近海环境的网络。【方法】文章提出了一种多头注意力增强的多智能体深度Q网络(MHA-MAD)算法,通过多头注意力机制高效提取网络环境的关键特征,并为不同特征赋予动态权重,从而提升建模精度。同时,采用多智能体框架,使多个智能体在共享网络环境中协作与同步决策,实现网络部署的全局优化。【结果】与现有基准方法相比,MHA-MAD算法在网络部署中使性能提高了近42%,其结果接近理论最优解。此外,与未利用多头注意力机制的多智能体深度Q网络(DQN)算法相比,MHAMAD算法在最小化网络部署总成本、节点功耗、链路衰减和网络风险的联合优化目标上,性能提高了近8%。【结论】MHAMAD算法为面向近海场景5G/B5G NG-RAN的WDM-PON部署与优化提供了新思路。 展开更多
关键词 网络部署 近海网络 无线和光纤接入网络 深度Q网络 多头注意力机制
在线阅读 下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部