Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th...In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.展开更多
Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for ...Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.展开更多
Density-functional-theory(DFT)simulations with the Vienna Ab initio Simulation Package(VASP)are indispensable in computational materials science but often require extensive manual setup,monitoring,and postprocessing.H...Density-functional-theory(DFT)simulations with the Vienna Ab initio Simulation Package(VASP)are indispensable in computational materials science but often require extensive manual setup,monitoring,and postprocessing.Here,we introduce VASPilot,an open-source platform that fully automates VASP workflows via a multi-agent architecture built on the CrewAI framework and a standardized model context protocol(MCP).VASPilot’s agent suite handles every stage of a VASP study from retrieving crystal structures and generating input files to submitting Slurm jobs,parsing error messages,and dynamically adjusting parameters for seamless restarts.A lightweight Quart-based web interface provides intuitive task submission,real-time progress tracking,and drill-down access to execution logs,structure visualizations,and plots.We validated VASPilot on both routine and advanced benchmarks:automated band-structure and density-of-states calculations(including on-the-fly symmetry corrections),plane-wave cutoff convergence tests,lattice-constant optimizations with various van der Waals corrections,and cross-material band-gap comparisons for transition-metal dichalcogenides.In all cases,VASPilot completed the missions reliably and without manual intervention.Moreover,its modular design allows easy extension to other DFT codes simply by deploying the appropriate MCP server.By offloading technical overhead,VASPilot enables researchers to focus on scientific discovery and accelerates high-throughput computational materials research.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interaction...This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interactions.Within the context of large models,AIx is characterized by its innovative interaction patterns and a plethora of application scenarios that hold great potential.The paper highlights the pivotal role of AIx in shaping the future landscape of the large model industry,emphasizing its adoption and necessity from a user's perspective.This study underscores the pivotal role of AIx in dictating the future trajectory of a large model industry by emphasizing the importance of its adoption and necessity from a user-centric perspective.The fundamental drivers of AIx include the introduction of novel capabilities,replication of capabilities(both anthropomorphic and superhuman),migration of capabilities,aggregation of intelligence,and multiplication of capabilities.These elements are essential for propelling innovation,expanding the frontiers of capability,and realizing the exponential superposition of capabilities,thereby mitigating labor redundancy and addressing a spectrum of human needs.Furthermore,this study provides an in-depth analysis of the structural components and operational mechanisms of agents supported by large models.Such advancements significantly enhance the capacity of agents to tackle complex problems and provide intelligent services,thereby facilitating a more intuitive,adaptive,and personalized engagement between humans and machines.The study further delineates four principal categories of interaction patterns that encompass eight distinct modalities of interaction,corresponding to twenty-one specific scenarios,including applications in smart home systems,health assistance,and elderly care.This emphasizes the significance of this new paradigm in advancing HCI,fostering technological advancements,and redefining user experiences.However,it also acknowledges the challenges and ethical considerations that accompany this paradigm shift,recognizing the need for a balanced approach to harness the full potential of AIx in modern society.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Background:In view of the ever-increasing representation of Staphylococcus spp.strains resistant to various antibiotics,the development of in vivo models for evaluation of novel antimicrobials is of utmost importance....Background:In view of the ever-increasing representation of Staphylococcus spp.strains resistant to various antibiotics,the development of in vivo models for evaluation of novel antimicrobials is of utmost importance.Methods:In this article,we describe the development of a fully immunocompetent porcine model of extensive skin and soft tissue damage suitable for testing topical anti-microbial agents that matches the real clinical situation.The model was developed in three consecutive stages with protocols for each stage amended based on the results of the previous one.Results:In the final model,10 excisions of the skin and underlying soft tissue were created in each pig under general anesthesia,with additional incisions to the fascia performed at the base of the defects and immediately inoculated with Staphylococcus aureus suspension.One pig was not inoculated and used as the negative control.Subsequently,the bandages were changed on Days 4,8,11,and 15.At these time points,a filter paper imprint technique(FPIT)was made from each wound for semi-quantitative microbiological evaluation.Tissue samples from the base of the wound together with the adjacent intact tissue of three randomly selected defects of each pig were taken for microbiological,histopathological,and molecular-biological examination.The infection with the inoculated S.aureus strains was sufficient during the whole experiment as confirmed by both FPIT and from tissue samples.The dynamics of the inflammatory markers and clinical signs of infection are also described.Conclusions:A successfully developed porcine model is suitable for in vivo testing of novel short-acting topical antimicrobial agents.展开更多
The integration of Green Artificial Intelligence(AI)technologies into educational systems offers a promising avenue to enhance operational efficiency while addressing sustainability challenges.Through a rigorous three...The integration of Green Artificial Intelligence(AI)technologies into educational systems offers a promising avenue to enhance operational efficiency while addressing sustainability challenges.Through a rigorous three-phase methodology combining literature review,AI agent development,and participatory workshop-based case analysis,this paper highlights the pivotal role of AI agents,as applications of Green AI technologies,in driving transformative outcomes within schools.By directly improving self-learning efficiency and reducing learning costs for students,enhancing management and service efficiency,reducing labor costs for schools,as well as minimizing resource dependence for both teachers and students,AI agents create a foundation for sustainable operations.These direct effects generate positive spillover effects,cascading into broader outcomes,including innovation performance,economic efficiency,and environmental sustainability,aligning with the United Nations Sustainable Development Goals(SDGs).By presenting a comprehensive conceptual model,this study demonstrates the pathways through which Green AI contributes to sustainable development in education and emphasizes its critical role in bridging technological innovation with sustainability.This framework provides significant theoretical insights for further empirical research while offering actionable strategies for policymakers and educators to harness Green AI for building sustainable schools with a student-centered approach.展开更多
Large language model-based agent systems are emerging as transformative technologies in chemical process simulation, enhancing efficiency, accuracy, and decision-making. By automating data analysis across structured a...Large language model-based agent systems are emerging as transformative technologies in chemical process simulation, enhancing efficiency, accuracy, and decision-making. By automating data analysis across structured and unstructured sources—including process parameters, experimental results, simulation data, and textual specifications—these systems address longstanding challenges such as manual parameter tuning, subjective expert reliance, and the gap between theoretical models and industrial application. This paper reviews the key barriers to broader adoption of large language model-based agent systems, including unstable software interfaces, limited dynamic modeling accuracy, and difficulties in multimodal data integration, which hinder scalable deployment. We then survey recent progress in domain-specific foundation models, model interpretability techniques, and industrial-grade validation platforms. Building on these insights, we propose a technical framework centered on three pillars: multimodal task perception, autonomous planning, and knowledge-driven iterative optimization. This framework supports adaptive reasoning and robust execution in complex simulation environments. Finally, we outline a next-generation intelligent paradigm where natural language-driven agent workflows unify high-level strategic intent with automated task execution. The paper concludes by identifying future research directions to enhance robustness, adaptability, and safety, paving the way for practical integration of large language model based agent systems into industrial-scale chemical process simulation.展开更多
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimi...In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm.展开更多
With the new characteristics of global cooperation in supply chains being synthetically considered,a hybrid model to the cooperative negotiation process for the order distribution in supply chain is mainly studied.Aft...With the new characteristics of global cooperation in supply chains being synthetically considered,a hybrid model to the cooperative negotiation process for the order distribution in supply chain is mainly studied.After reviewing and analyzing some main domestic and overseas processes in cooperative negotiation modeling in supply chain,some problems are subsequently pointed out.For example,the traditional simple multi-agent system(MAS)frameworks which have some limitations,are not suitable for solving modeling complex systems.To solve these problems,thinking with the aid of the multi-agent structure and complex system modeling,the manufacturing supply chain is taken as an example,and a time Petri net production model is adopted to decompose the materials.And then a cooperative negotiation model for the order distribution in supply chain is constructed based on combining multi-agent techniques with time Petri net modeling.The simulation results reveal that the above model helps solve the problems of cooperative negotiation in supply chains.展开更多
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金National Natural Science Foundation of china(No.42371446)Natural Science Foundatiorof Hubei Province(No.2024AFD412)Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(No.2024XLA17).
文摘In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.
基金supported in part by the National Natural Science Foundation of China(62276119)the Natural Science Foundation of Jiangsu Province(BK20241764)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2860)
文摘Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.
基金supported by the Science Center of the National Natural Science Foundation of China(Grant No.12188101)the National Key R&D Program of China(Grant Nos.2023YFA1607400 and 2022YFA1403800)+2 种基金the National Natural Science Foundation of China(Grant Nos.12274436,11925408,and 11921004)the New Cornerstone Science Foundation through the XPLORER PRIZEperformed on the robotic AI-Scientist platform of the Chinese Academy of Science.
文摘Density-functional-theory(DFT)simulations with the Vienna Ab initio Simulation Package(VASP)are indispensable in computational materials science but often require extensive manual setup,monitoring,and postprocessing.Here,we introduce VASPilot,an open-source platform that fully automates VASP workflows via a multi-agent architecture built on the CrewAI framework and a standardized model context protocol(MCP).VASPilot’s agent suite handles every stage of a VASP study from retrieving crystal structures and generating input files to submitting Slurm jobs,parsing error messages,and dynamically adjusting parameters for seamless restarts.A lightweight Quart-based web interface provides intuitive task submission,real-time progress tracking,and drill-down access to execution logs,structure visualizations,and plots.We validated VASPilot on both routine and advanced benchmarks:automated band-structure and density-of-states calculations(including on-the-fly symmetry corrections),plane-wave cutoff convergence tests,lattice-constant optimizations with various van der Waals corrections,and cross-material band-gap comparisons for transition-metal dichalcogenides.In all cases,VASPilot completed the missions reliably and without manual intervention.Moreover,its modular design allows easy extension to other DFT codes simply by deploying the appropriate MCP server.By offloading technical overhead,VASPilot enables researchers to focus on scientific discovery and accelerates high-throughput computational materials research.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
文摘This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interactions.Within the context of large models,AIx is characterized by its innovative interaction patterns and a plethora of application scenarios that hold great potential.The paper highlights the pivotal role of AIx in shaping the future landscape of the large model industry,emphasizing its adoption and necessity from a user's perspective.This study underscores the pivotal role of AIx in dictating the future trajectory of a large model industry by emphasizing the importance of its adoption and necessity from a user-centric perspective.The fundamental drivers of AIx include the introduction of novel capabilities,replication of capabilities(both anthropomorphic and superhuman),migration of capabilities,aggregation of intelligence,and multiplication of capabilities.These elements are essential for propelling innovation,expanding the frontiers of capability,and realizing the exponential superposition of capabilities,thereby mitigating labor redundancy and addressing a spectrum of human needs.Furthermore,this study provides an in-depth analysis of the structural components and operational mechanisms of agents supported by large models.Such advancements significantly enhance the capacity of agents to tackle complex problems and provide intelligent services,thereby facilitating a more intuitive,adaptive,and personalized engagement between humans and machines.The study further delineates four principal categories of interaction patterns that encompass eight distinct modalities of interaction,corresponding to twenty-one specific scenarios,including applications in smart home systems,health assistance,and elderly care.This emphasizes the significance of this new paradigm in advancing HCI,fostering technological advancements,and redefining user experiences.However,it also acknowledges the challenges and ethical considerations that accompany this paradigm shift,recognizing the need for a balanced approach to harness the full potential of AIx in modern society.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金Supported by the Ministry of Health of the Czech Republic,Grant/Award Number:NU22-05-00475 and NV19-05-00214。
文摘Background:In view of the ever-increasing representation of Staphylococcus spp.strains resistant to various antibiotics,the development of in vivo models for evaluation of novel antimicrobials is of utmost importance.Methods:In this article,we describe the development of a fully immunocompetent porcine model of extensive skin and soft tissue damage suitable for testing topical anti-microbial agents that matches the real clinical situation.The model was developed in three consecutive stages with protocols for each stage amended based on the results of the previous one.Results:In the final model,10 excisions of the skin and underlying soft tissue were created in each pig under general anesthesia,with additional incisions to the fascia performed at the base of the defects and immediately inoculated with Staphylococcus aureus suspension.One pig was not inoculated and used as the negative control.Subsequently,the bandages were changed on Days 4,8,11,and 15.At these time points,a filter paper imprint technique(FPIT)was made from each wound for semi-quantitative microbiological evaluation.Tissue samples from the base of the wound together with the adjacent intact tissue of three randomly selected defects of each pig were taken for microbiological,histopathological,and molecular-biological examination.The infection with the inoculated S.aureus strains was sufficient during the whole experiment as confirmed by both FPIT and from tissue samples.The dynamics of the inflammatory markers and clinical signs of infection are also described.Conclusions:A successfully developed porcine model is suitable for in vivo testing of novel short-acting topical antimicrobial agents.
基金2024 Academic Research of Zhejiang Technical Institute of Economics:“Spillover Effects of Multimodal AI Agents on Green School Development”(Project No.:X2024038)2024-2025 Research and Creative Project,Department of Culture and Tourism:“The Application of Digital Information Technology in Safety Early Warning and Supervision of Cultural Relics in Zhejiang,China”(Project No.:2024KYY045)2024 General Research Project of Zhejiang Provincial Department of Education:“Empirical Research on Low-Carbon Economy Driving the Development of New Quality Productivity:A Case Study of Zhejiang Province”(Project No.:Y202456145)。
文摘The integration of Green Artificial Intelligence(AI)technologies into educational systems offers a promising avenue to enhance operational efficiency while addressing sustainability challenges.Through a rigorous three-phase methodology combining literature review,AI agent development,and participatory workshop-based case analysis,this paper highlights the pivotal role of AI agents,as applications of Green AI technologies,in driving transformative outcomes within schools.By directly improving self-learning efficiency and reducing learning costs for students,enhancing management and service efficiency,reducing labor costs for schools,as well as minimizing resource dependence for both teachers and students,AI agents create a foundation for sustainable operations.These direct effects generate positive spillover effects,cascading into broader outcomes,including innovation performance,economic efficiency,and environmental sustainability,aligning with the United Nations Sustainable Development Goals(SDGs).By presenting a comprehensive conceptual model,this study demonstrates the pathways through which Green AI contributes to sustainable development in education and emphasizes its critical role in bridging technological innovation with sustainability.This framework provides significant theoretical insights for further empirical research while offering actionable strategies for policymakers and educators to harness Green AI for building sustainable schools with a student-centered approach.
文摘Large language model-based agent systems are emerging as transformative technologies in chemical process simulation, enhancing efficiency, accuracy, and decision-making. By automating data analysis across structured and unstructured sources—including process parameters, experimental results, simulation data, and textual specifications—these systems address longstanding challenges such as manual parameter tuning, subjective expert reliance, and the gap between theoretical models and industrial application. This paper reviews the key barriers to broader adoption of large language model-based agent systems, including unstable software interfaces, limited dynamic modeling accuracy, and difficulties in multimodal data integration, which hinder scalable deployment. We then survey recent progress in domain-specific foundation models, model interpretability techniques, and industrial-grade validation platforms. Building on these insights, we propose a technical framework centered on three pillars: multimodal task perception, autonomous planning, and knowledge-driven iterative optimization. This framework supports adaptive reasoning and robust execution in complex simulation environments. Finally, we outline a next-generation intelligent paradigm where natural language-driven agent workflows unify high-level strategic intent with automated task execution. The paper concludes by identifying future research directions to enhance robustness, adaptability, and safety, paving the way for practical integration of large language model based agent systems into industrial-scale chemical process simulation.
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
基金The National Key Technology R&D Program during the 11th Five-Year Plan Period of China (No. 2009BAG17B02)the National High Technology Research and Development Program of China (863 Program) (No. 2011AA110304)the National Natural Science Foundation of China (No. 50908100)
文摘In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm.
基金The National Natural Science Foundation of China(No.70401013)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘With the new characteristics of global cooperation in supply chains being synthetically considered,a hybrid model to the cooperative negotiation process for the order distribution in supply chain is mainly studied.After reviewing and analyzing some main domestic and overseas processes in cooperative negotiation modeling in supply chain,some problems are subsequently pointed out.For example,the traditional simple multi-agent system(MAS)frameworks which have some limitations,are not suitable for solving modeling complex systems.To solve these problems,thinking with the aid of the multi-agent structure and complex system modeling,the manufacturing supply chain is taken as an example,and a time Petri net production model is adopted to decompose the materials.And then a cooperative negotiation model for the order distribution in supply chain is constructed based on combining multi-agent techniques with time Petri net modeling.The simulation results reveal that the above model helps solve the problems of cooperative negotiation in supply chains.