Windows CE操作系统存在启动速度慢的现象。为此在解析系统镜像文件和研究镜像文件下载函数的基础上,设计了一种在Windows CE系统Bootloader中实现Multi-bin的方法。通过调用Bootloader中的BootPart支持库的接口函数,借助BinFS文件系统...Windows CE操作系统存在启动速度慢的现象。为此在解析系统镜像文件和研究镜像文件下载函数的基础上,设计了一种在Windows CE系统Bootloader中实现Multi-bin的方法。通过调用Bootloader中的BootPart支持库的接口函数,借助BinFS文件系统,从而减少了系统的启动时延,增加了用户的可用内存,降低了客户的等待时间,最终达到提高客户用户体验(QoE)的目的。展开更多
For many water quality studies,a data analyst,or modeler, may need to know the spatio-temproal patterns of the data sets and their relationships in both pre-processing and post-processing. Geographic Information Syste...For many water quality studies,a data analyst,or modeler, may need to know the spatio-temproal patterns of the data sets and their relationships in both pre-processing and post-processing. Geographic Information System(GIS) can provide an exploratory spat展开更多
Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. Th...Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.展开更多
为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解...为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解码.利用多尺度卷积模块提取信号的底层时空特征,通过滑动窗口注意力机制聚焦局部关键特征,突出对分类任务重要的信息.窗口化时间卷积模块通过建模时间序列中的长期依赖关系,增强模型处理时序信息的能力.实验结果表明,MSWATCN在BCI Competition IV 2a和2b数据集上的分类准确率和一致性优于对比网络和基准模型.展开更多
文摘For many water quality studies,a data analyst,or modeler, may need to know the spatio-temproal patterns of the data sets and their relationships in both pre-processing and post-processing. Geographic Information System(GIS) can provide an exploratory spat
文摘Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.
文摘为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解码.利用多尺度卷积模块提取信号的底层时空特征,通过滑动窗口注意力机制聚焦局部关键特征,突出对分类任务重要的信息.窗口化时间卷积模块通过建模时间序列中的长期依赖关系,增强模型处理时序信息的能力.实验结果表明,MSWATCN在BCI Competition IV 2a和2b数据集上的分类准确率和一致性优于对比网络和基准模型.