Laser powder bed fusion(LPBF)has made significant progress in producing solid and porous metal parts with complex shapes and geometries.However,LPBF produced parts often have defects(e.g.,porosity,residual stress,and i...Laser powder bed fusion(LPBF)has made significant progress in producing solid and porous metal parts with complex shapes and geometries.However,LPBF produced parts often have defects(e.g.,porosity,residual stress,and incomplete melting)that hinder its large-scale industrial commercialization.The LPBF process involves complex heat transfer andfluidflow,and the melt pool is a critical component of the process.The melt pool stability is a critical factor in determining the microstructure,mechanical properties,and corrosion resistance of LPBF produced metal parts.Furthermore,optimizing process parameters for new materials and designed structures is challenging due to the complexity of the LPBF process.This requires numerous trial-and-error cycles to minimize defects and enhance properties.This review examines the behavior of the melt pool during the LPBF process,including its effects and formation mechanisms.This article summarizes the experimental results and simulations of melt pool and identifies various factors that influence its behavior,which facilitates a better understanding of the melt pool's behavior during LPBF.This review aims to highlight key aspects of the investigation of melt pool tracks and microstructural characterization,with the goal of enhancing a better understanding of the relationship between alloy powder-process-microstructure-properties in LPBF from both single-and multi-melt pool track perspectives.By identifying the challenges and opportunities in investigating single-and multi-melt pool tracks,this review could contribute to the advancement of LPBF processes,optimal process window,and quality optimization,which ultimately improves accuracy in process parameters and efficiency in qualifying alloy powders.展开更多
A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form ...A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.展开更多
A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of r...A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy...In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.展开更多
Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive ...Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods.展开更多
The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, refl...The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.展开更多
A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically...A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.展开更多
<div style="text-align:justify;"> In recent years, multi-target tracking technology based on Gaussian Mixture- Probability Hypothesis Density (GM-PHD) filtering has become a hot field of information fu...<div style="text-align:justify;"> In recent years, multi-target tracking technology based on Gaussian Mixture- Probability Hypothesis Density (GM-PHD) filtering has become a hot field of information fusion research. This article outlines the generation and development of multi-target tracking methods based on GM-PHD filtering, and the principle and implementation method of GM-PHD filtering are explained, and the application status based on GM-PHD filtering is summarized, and the key issues of the development of GM-PHD filtering technology are analyzed. </div>展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers ar...We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.展开更多
The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) re...The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.展开更多
In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discus...In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we propose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is proposed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demonstrated higher accuracy and efficiency compared to state-of-the-art approaches.展开更多
This paper introduces an approach for visual tracking of multi-target with occlusion occurrence. Based on the author's previous work in which the Overlap Coefficient (OC) is used to detect the occlusion, in this p...This paper introduces an approach for visual tracking of multi-target with occlusion occurrence. Based on the author's previous work in which the Overlap Coefficient (OC) is used to detect the occlusion, in this paper a method of combining Bhattacharyya Coefficient (BC) and Kalman filter innovation term is proposed as the criteria for jointly detecting the occlusion occurrence. Fragmentation of target is introduced in order to closely monitor the occlusion development. In the course of occlusion, the Kalman predictor is applied to determine the location of the occluded target, and the criterion for checking the re-appearance of the occluded target is also presented. The proposed approach is put to test on a standard video sequence, suggesting the satisfactory performance in multi-target tracking.展开更多
The multi-tone frequency modulation (FM) signal transferred through track circuit in automatic train control (ATC) system is analyzed. A digital filter with ideal sloping shape in frequency domain is designed for ...The multi-tone frequency modulation (FM) signal transferred through track circuit in automatic train control (ATC) system is analyzed. A digital filter with ideal sloping shape in frequency domain is designed for frequency discrimination. With this filter, the FM signal is converted into AM-FM signal by frequency-to-amplitude conversion. The modulating signal is finally extracted from the envelope of the AM-FM signal. Simulations show that the digital demodulation method could accurately recover the modulating signal in low signal noise ratio (SNR) circumstance, and has good performance in suppressing interference of harmonies of traction current frequency. The feasibility of the proposed method is proved in a hardware system based on SHARC DSP.展开更多
Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this stud...Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this study, we propose an underground coal mine personnel target tracking method using multi-feature joint sparse representation. First, with a particle filter framework, the global and local multiple features of the target template and candidate particles are extracted. Second, each of the candidate particles is sparsely represented by a dictionary template, and reconstruction is achieved after solving the sparse coefficient. Last, the particle with the lowest reconstruction error is deemed the tracking result. To validate the effectiveness of the proposed algorithm, we compare the proposed method with three commonly employed tracking algorithms. The results show that the proposed method is able to reliably track the target in various scenarios, such as occlusion and illumination change, which generates better tracking results and validates the feasibility and effectiveness of the proposed method.展开更多
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr...In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.展开更多
基金the Australian Government Research Training Program Scholarship,and the Australian Research Council through Discovery Projects(DP110101653,DP130103592)。
文摘Laser powder bed fusion(LPBF)has made significant progress in producing solid and porous metal parts with complex shapes and geometries.However,LPBF produced parts often have defects(e.g.,porosity,residual stress,and incomplete melting)that hinder its large-scale industrial commercialization.The LPBF process involves complex heat transfer andfluidflow,and the melt pool is a critical component of the process.The melt pool stability is a critical factor in determining the microstructure,mechanical properties,and corrosion resistance of LPBF produced metal parts.Furthermore,optimizing process parameters for new materials and designed structures is challenging due to the complexity of the LPBF process.This requires numerous trial-and-error cycles to minimize defects and enhance properties.This review examines the behavior of the melt pool during the LPBF process,including its effects and formation mechanisms.This article summarizes the experimental results and simulations of melt pool and identifies various factors that influence its behavior,which facilitates a better understanding of the melt pool's behavior during LPBF.This review aims to highlight key aspects of the investigation of melt pool tracks and microstructural characterization,with the goal of enhancing a better understanding of the relationship between alloy powder-process-microstructure-properties in LPBF from both single-and multi-melt pool track perspectives.By identifying the challenges and opportunities in investigating single-and multi-melt pool tracks,this review could contribute to the advancement of LPBF processes,optimal process window,and quality optimization,which ultimately improves accuracy in process parameters and efficiency in qualifying alloy powders.
基金Supported by National Natural Science Foundation of China(Grant No.61733017)Foundation of State Key Laboratory of Robotics of China(Grant No.2018O13)Shanghai Pujiang Program of China(Grant No.18PJD018).
文摘A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.
基金This study was supported by the Special Fund for Basic Research and Operation of Chinese Academy of Meteorological Science:Development on quantitative precipitation forecasts for 0-6 h lead times by blending radar-based extrapolation and GRAPES-meso,Observation and retrieval methods of micro-physics,the National Natural Science Foundation of China
文摘A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金supported by the National GNSS Research Center Program of the Defense Acquisition Program Administration and Agency for Defense Developmentthe Ministry of Science and ICT of the Republic of Korea through the Space Core Technology Development Program (No. NRF2018M1A3A3A02065722)
文摘In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.
基金This paper was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK2004132).
文摘Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods.
基金Major funding for this research was provided under the United States Federal Aviation Administration (FAA) Aviation Weather Research Program Advanced Weather Radar Technologies Prod-uct Development Team Memorandum Of Understanding(MOU)partial funding was provided under NOAA-University of Oklahoma Cooperative Agreement Grant No. NA17RJ1227, U.S. Department of Commerce
文摘The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.
基金Supported by the National Natural Science Foundation of China(6160303040,61433003)Yunnan Applied Basic Research Project of China(201701CF00037)Yunnan Provincial Science and Technology Department Key Research Program(Engineering)(2018BA070)
文摘A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.
文摘<div style="text-align:justify;"> In recent years, multi-target tracking technology based on Gaussian Mixture- Probability Hypothesis Density (GM-PHD) filtering has become a hot field of information fusion research. This article outlines the generation and development of multi-target tracking methods based on GM-PHD filtering, and the principle and implementation method of GM-PHD filtering are explained, and the application status based on GM-PHD filtering is summarized, and the key issues of the development of GM-PHD filtering technology are analyzed. </div>
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203142)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2014202206 and F2017202009)
文摘We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60977005)
文摘The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.
文摘In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we propose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is proposed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demonstrated higher accuracy and efficiency compared to state-of-the-art approaches.
基金Supported by the Program for Technology Innovation Team of Ningbo Government (No. 2011B81002)the Ningbo University Science Research Foundation (No.xkl11075)
文摘This paper introduces an approach for visual tracking of multi-target with occlusion occurrence. Based on the author's previous work in which the Overlap Coefficient (OC) is used to detect the occlusion, in this paper a method of combining Bhattacharyya Coefficient (BC) and Kalman filter innovation term is proposed as the criteria for jointly detecting the occlusion occurrence. Fragmentation of target is introduced in order to closely monitor the occlusion development. In the course of occlusion, the Kalman predictor is applied to determine the location of the occluded target, and the criterion for checking the re-appearance of the occluded target is also presented. The proposed approach is put to test on a standard video sequence, suggesting the satisfactory performance in multi-target tracking.
文摘The multi-tone frequency modulation (FM) signal transferred through track circuit in automatic train control (ATC) system is analyzed. A digital filter with ideal sloping shape in frequency domain is designed for frequency discrimination. With this filter, the FM signal is converted into AM-FM signal by frequency-to-amplitude conversion. The modulating signal is finally extracted from the envelope of the AM-FM signal. Simulations show that the digital demodulation method could accurately recover the modulating signal in low signal noise ratio (SNR) circumstance, and has good performance in suppressing interference of harmonies of traction current frequency. The feasibility of the proposed method is proved in a hardware system based on SHARC DSP.
文摘Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this study, we propose an underground coal mine personnel target tracking method using multi-feature joint sparse representation. First, with a particle filter framework, the global and local multiple features of the target template and candidate particles are extracted. Second, each of the candidate particles is sparsely represented by a dictionary template, and reconstruction is achieved after solving the sparse coefficient. Last, the particle with the lowest reconstruction error is deemed the tracking result. To validate the effectiveness of the proposed algorithm, we compare the proposed method with three commonly employed tracking algorithms. The results show that the proposed method is able to reliably track the target in various scenarios, such as occlusion and illumination change, which generates better tracking results and validates the feasibility and effectiveness of the proposed method.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project of National Science Foundation of China (No. 60934003)+2 种基金National Nature Science Foundation of China (No. 61074065)Key Project for Natural Science Research of Hebei Education Department, PRC(No. ZD200908)Key Project for Shanghai Committee of Science and Technology (No. 08511501600)
文摘In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.