In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M...In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i...In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems.展开更多
Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this...Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.展开更多
Energy consumption in agricultural products and its environmental damages has increased in recent centuries.Life cycle assessment(LCA)has been introduced as a suitable tool for evaluation environmental impacts related...Energy consumption in agricultural products and its environmental damages has increased in recent centuries.Life cycle assessment(LCA)has been introduced as a suitable tool for evaluation environmental impacts related to a product over its life cycle.In this study,optimization of energy consumption and environmental impacts of chickpea production was conducted using data envelopment analysis(DEA)and multi objective genetic algorithm(MOGA)techniques.Data were collected from 110 chickpea production enterprises using a face to face questionnaire in the cropping season of 2014-2015.The results of optimization revealed that,when applying MOGA,optimum energy requirement for chickpea production was significantly lower compared to application of DEA technique;so that,total energy requirement in optimum situation was found to be 31511.72 and 27570.61 MJ ha^-1 by using DEA and MOGA techniques,respectively;showing a reduction by 5.11%and 17%relative to current situation of energy consumption.Optimization of environmental impacts by application of MOGA resulted in reduction of acidification potential(ACP),eutrophication potential(EUP),global warming potential(GWP),human toxicity potential(HTP)and terrestrial ecotoxicity potential(TEP)by 29%,23%,10%,6%and 36%,respectively.MOGAwas capable of reducing the energy consumption from machinery,farmyard manure(FYM)diesel fuel and nitrogen fertilizer(the mostly contributed inputs to the environmental emissions)by 59%,28.5%,24.58%and 11.24%,respectively.Overall,the MOGA technique showed a superior performance relative to DEA approach for optimizing energy inputs and reducing environmental impacts of chickpea production system.展开更多
In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution gener...In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation.展开更多
A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole infor...A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.展开更多
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the...In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.展开更多
Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty per...Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield.展开更多
The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-o...The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.展开更多
To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with...To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with surrogatemodel (MOFA-SM) is proposed in this paper. Firstly, the population wasinitialized according to the chaotic mapping. Secondly, the external archive wasconstructed based on the preference sorting, with the lightweight clustering pruningstrategy. In the process of evolution, the elite solutions selected from archivewere used to guide the movement to search optimal solutions. Simulation resultsshow that the proposed algorithm can achieve better performance in terms ofconvergence iteration and stability.展开更多
To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as...To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.展开更多
Design change is an inevitable part of the product development process.This study proposes an improved binary multi‐objective PSO algorithm guided by problem char-acteristics(P‐BMOPSO)to solve the optimisation probl...Design change is an inevitable part of the product development process.This study proposes an improved binary multi‐objective PSO algorithm guided by problem char-acteristics(P‐BMOPSO)to solve the optimisation problem of complex product change plan considering service performance.Firstly,a complex product multi‐layer network with service performance is established for the first time to reveal the impact of change effect propagation on the product service performance.Secondly,the concept of service performance impact(SPI)is defined by decoupling the impact of strongly associated nodes on the service performance in the process of change affect propagation.Then,a triple‐objective selection model of change nodes is established,which includes the three indicators:SPI degree,change cost,and change time.Furthermore,an integer multi‐objective particle swarm optimisation algorithm guided by problem characteristics is developed to solve the model above.Experimental results on the design change problem of a certain type of Skyworth TV verify the effectiveness of the established optimisation model and the proposed P‐BMOPSO algorithm.展开更多
This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto...This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%.展开更多
Helical axial-flow multiphase pumps are core devices for developing deep-sea oil and gas,but the complex two-phase flow inside such pumps affects their transport stability.As reported here,for enhanced flow characteri...Helical axial-flow multiphase pumps are core devices for developing deep-sea oil and gas,but the complex two-phase flow inside such pumps affects their transport stability.As reported here,for enhanced flow characteristics,splitter blades were added at the noncoincidence area of the impeller tail by using a multi-objective optimization method,and their impact on the pump performance was explored in comparison with the original model.The results indicate that Gaussian process regression combined with particle swarm optimization accurately predicts the pump external characteristics.Under an inlet gas volume fraction of 30%,the optimized model increases the head coefficient by 22.2%without reducing efficiency.Although splitter blades enhance the impeller tail,they intensify gas-phase accumulation at the tail.The optimized model promotes more-uniform two-phase flow in the channels,with the axial velocity uniformity of the gas phase and liquid phase improving by 15.1%and 9.5%and the average velocity angle increasing by 12.3°and 8.3°under an inlet gas volume fraction of 30%.展开更多
With the large-scale promotion of distributed photovoltaics,new challenges have emerged in the photovoltaic consumptionwithin distribution networks.Traditional photovoltaic consumption schemes have primarily focused o...With the large-scale promotion of distributed photovoltaics,new challenges have emerged in the photovoltaic consumptionwithin distribution networks.Traditional photovoltaic consumption schemes have primarily focused on static analysis.However,as the scale of photovoltaic power generation devices grows and the methods of integration diversify,a single consumption scheme is no longer sufficient to meet the actual needs of current distribution networks.Therefore,this paper proposes an optimal evaluation method for photovoltaic consumption schemes based on BASS model predictions of installed capacity,aiming to provide an effective tool for generating and evaluating photovoltaic consumption schemes in distribution networks.First,the BASS diffusion model,combined with existing photovoltaic capacity data and roof area information,is used to predict the trends in photovoltaic installed capacity for each substation area,providing a scientific basis for consumption evaluation.Secondly,an improved random scenario simulation method is proposed for assessing the photovoltaic consumption capacity in distribution networks.This method generates photovoltaic integration schemes based on the diffusion probabilities of different regions and evaluates the consumption capacity of each scheme.Finally,the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is used to comprehensively evaluate the generated schemes,ensuring that the selected scheme not only meets the consumption requirements but also offers high economic benefits and reliability.The effectiveness and feasibility of the proposedmethod are validated through simulations of the IEEE 33-node system,providing strong support for optimizing photovoltaic consumption schemes in distribution networks.展开更多
The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we foun...The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we found some defects of the method and pointed out these defects. To overcome these defects we absorbed the spirit and exploited concepts of evaluation criterion and the fault measure of evaluation criterion. We proposed and applied a method with an evaluation criterion, after which we also p...展开更多
High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four typ...High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody.展开更多
A mathematical model of friction coefficient was proposed for the roll force calculation of hot-rolled strips. The online numerical solving method of the roll force calculation formula based on the proposed friction m...A mathematical model of friction coefficient was proposed for the roll force calculation of hot-rolled strips. The online numerical solving method of the roll force calculation formula based on the proposed friction model was developed and illustrated by the practical calculation case. Then, the friction coefficient during hot strip rolling was estimated from the measured roll force by force model inversion. And then, the expression of friction model was pro posed by analyzing the calculation process of stress state coefficient, and the model parameters were determined by the shared parameter multi-model nonlinear optimization method. Finally, the industrial experiments demonstrated the feasibility and effectiveness of the related models. The accuracy of the new roll force model based on the built friction model was much higher than that of the traditional Sims model, and it could be applied in the online hot rolling process control.展开更多
Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, a...Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.展开更多
文摘In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金Sponsored by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2022L294)Taiyuan University of Science and Technology Scientific Research Initial Funding(Grant Nos.W2022018,W20242012)Foundamental Research Program of Shanxi Province(Grant No.202403021212170).
文摘In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems.
文摘Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.
基金The financial support provided by the University of Tehran,Iran,is duly acknowledged.
文摘Energy consumption in agricultural products and its environmental damages has increased in recent centuries.Life cycle assessment(LCA)has been introduced as a suitable tool for evaluation environmental impacts related to a product over its life cycle.In this study,optimization of energy consumption and environmental impacts of chickpea production was conducted using data envelopment analysis(DEA)and multi objective genetic algorithm(MOGA)techniques.Data were collected from 110 chickpea production enterprises using a face to face questionnaire in the cropping season of 2014-2015.The results of optimization revealed that,when applying MOGA,optimum energy requirement for chickpea production was significantly lower compared to application of DEA technique;so that,total energy requirement in optimum situation was found to be 31511.72 and 27570.61 MJ ha^-1 by using DEA and MOGA techniques,respectively;showing a reduction by 5.11%and 17%relative to current situation of energy consumption.Optimization of environmental impacts by application of MOGA resulted in reduction of acidification potential(ACP),eutrophication potential(EUP),global warming potential(GWP),human toxicity potential(HTP)and terrestrial ecotoxicity potential(TEP)by 29%,23%,10%,6%and 36%,respectively.MOGAwas capable of reducing the energy consumption from machinery,farmyard manure(FYM)diesel fuel and nitrogen fertilizer(the mostly contributed inputs to the environmental emissions)by 59%,28.5%,24.58%and 11.24%,respectively.Overall,the MOGA technique showed a superior performance relative to DEA approach for optimizing energy inputs and reducing environmental impacts of chickpea production system.
文摘In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation.
文摘A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.
文摘In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.
基金support of RUSA-Phase 2.0 grant sanctioned vide Letter No.F.24-51/2014-U,Policy(TNMulti-Gen),Dep.of Edn.Govt.of India,Dt.09.10.2018.
文摘Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield.
文摘The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.
文摘To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with surrogatemodel (MOFA-SM) is proposed in this paper. Firstly, the population wasinitialized according to the chaotic mapping. Secondly, the external archive wasconstructed based on the preference sorting, with the lightweight clustering pruningstrategy. In the process of evolution, the elite solutions selected from archivewere used to guide the movement to search optimal solutions. Simulation resultsshow that the proposed algorithm can achieve better performance in terms ofconvergence iteration and stability.
文摘To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.
基金supported by The National Key Research and Development Program of China(No.2020YFB1708200).
文摘Design change is an inevitable part of the product development process.This study proposes an improved binary multi‐objective PSO algorithm guided by problem char-acteristics(P‐BMOPSO)to solve the optimisation problem of complex product change plan considering service performance.Firstly,a complex product multi‐layer network with service performance is established for the first time to reveal the impact of change effect propagation on the product service performance.Secondly,the concept of service performance impact(SPI)is defined by decoupling the impact of strongly associated nodes on the service performance in the process of change affect propagation.Then,a triple‐objective selection model of change nodes is established,which includes the three indicators:SPI degree,change cost,and change time.Furthermore,an integer multi‐objective particle swarm optimisation algorithm guided by problem characteristics is developed to solve the model above.Experimental results on the design change problem of a certain type of Skyworth TV verify the effectiveness of the established optimisation model and the proposed P‐BMOPSO algorithm.
文摘This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%.
基金supported by the National Natural Science Foundation of China(Grant Nos.52179086 and 52269022)the Central Government Guides’Local Science and Technology Development Funding Project(Grant No.23ZYQA0320).
文摘Helical axial-flow multiphase pumps are core devices for developing deep-sea oil and gas,but the complex two-phase flow inside such pumps affects their transport stability.As reported here,for enhanced flow characteristics,splitter blades were added at the noncoincidence area of the impeller tail by using a multi-objective optimization method,and their impact on the pump performance was explored in comparison with the original model.The results indicate that Gaussian process regression combined with particle swarm optimization accurately predicts the pump external characteristics.Under an inlet gas volume fraction of 30%,the optimized model increases the head coefficient by 22.2%without reducing efficiency.Although splitter blades enhance the impeller tail,they intensify gas-phase accumulation at the tail.The optimized model promotes more-uniform two-phase flow in the channels,with the axial velocity uniformity of the gas phase and liquid phase improving by 15.1%and 9.5%and the average velocity angle increasing by 12.3°and 8.3°under an inlet gas volume fraction of 30%.
基金supported in part by theThe Planning Subject Project of Guangdong Power Grid Co.,Ltd.(62273104).
文摘With the large-scale promotion of distributed photovoltaics,new challenges have emerged in the photovoltaic consumptionwithin distribution networks.Traditional photovoltaic consumption schemes have primarily focused on static analysis.However,as the scale of photovoltaic power generation devices grows and the methods of integration diversify,a single consumption scheme is no longer sufficient to meet the actual needs of current distribution networks.Therefore,this paper proposes an optimal evaluation method for photovoltaic consumption schemes based on BASS model predictions of installed capacity,aiming to provide an effective tool for generating and evaluating photovoltaic consumption schemes in distribution networks.First,the BASS diffusion model,combined with existing photovoltaic capacity data and roof area information,is used to predict the trends in photovoltaic installed capacity for each substation area,providing a scientific basis for consumption evaluation.Secondly,an improved random scenario simulation method is proposed for assessing the photovoltaic consumption capacity in distribution networks.This method generates photovoltaic integration schemes based on the diffusion probabilities of different regions and evaluates the consumption capacity of each scheme.Finally,the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is used to comprehensively evaluate the generated schemes,ensuring that the selected scheme not only meets the consumption requirements but also offers high economic benefits and reliability.The effectiveness and feasibility of the proposedmethod are validated through simulations of the IEEE 33-node system,providing strong support for optimizing photovoltaic consumption schemes in distribution networks.
文摘The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we found some defects of the method and pointed out these defects. To overcome these defects we absorbed the spirit and exploited concepts of evaluation criterion and the fault measure of evaluation criterion. We proposed and applied a method with an evaluation criterion, after which we also p...
基金supported by the National Railway Group Science and Technology Program(Nos.N2020J026 and N2021J028)the Independent Research and Development Project of State Key Laboratory of Traction Power,China(No.2022TPL_Q02)。
文摘High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody.
基金Item Sponsored by Science and Technology Research Program of Hubei Ministry of Education of China(D20161103)Youth Science and Technology Program of Wuhan of China(2016070204010099)
文摘A mathematical model of friction coefficient was proposed for the roll force calculation of hot-rolled strips. The online numerical solving method of the roll force calculation formula based on the proposed friction model was developed and illustrated by the practical calculation case. Then, the friction coefficient during hot strip rolling was estimated from the measured roll force by force model inversion. And then, the expression of friction model was pro posed by analyzing the calculation process of stress state coefficient, and the model parameters were determined by the shared parameter multi-model nonlinear optimization method. Finally, the industrial experiments demonstrated the feasibility and effectiveness of the related models. The accuracy of the new roll force model based on the built friction model was much higher than that of the traditional Sims model, and it could be applied in the online hot rolling process control.
基金Supported by the National Key Technology R&D Program of the 11th Five-Year Plan of China(2006BAF04B05)the Natural Science Foundation of Shanxi Province(2010021024-2)
文摘Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.