To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation f...The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation front-end for the RF station.For that application,a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility.The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design.With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion,specially designed LO distribution net to increase isolation between adjacent channels,and external band-pass filter to realize expected up-conversion frequencies,high maintenance and modular front-end generalpurpose design has been implemented.Results of standard parameters show an R2 value of at least 99.991%in the range of-60-10 dBm for linearity,up to 18 dBm for P1dB,and up to 89 dBc for cross talk between adjacent channels.The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz;cumulative phase noise is 0.006°;and amplitude and phase stability are 0.022%and 0.034°,respectively.展开更多
This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by t...This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by the noise canceling technique while the bandwidth is enhanced by gate inductive peaking technique. Measurement results show that, while the input frequency ranges from 100 MHz to 2.9 GHz, the proposed reconfigurable RF front-end achieves a controllable voltage conversion gain(VCG) from 18 dB to 39 dB. The measured maximum input third intercept point(IIP3) is-4.9 dBm and the minimum noise figure(NF) is 4.6 dB. The consumed current ranges from 16 mA to 26.5 mA from a 1.8 V supply voltage. The chip occupies an area of 1.17 mm^2 including pads.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are use...Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are used in reality.It is almost impossible to use a CW signal to predict system performances,such as error vector magnitude(EVM),bit error rate(BER),etc.,of a transceiver front-end when dealing with complex modulated signals.This paper develops an integrated system evaluation engine(ISEE)to evaluate the system performances of a transceiver front-end or its sub-circuits.This crossdomain simulation platform is based on Matlab,advanced design system(ADS),and Cadence simulators to link the baseband signals and transceiver frond-end.An orthogonal frequency division multiplex(OFDM)modem is implemented in Matlab for evaluating the system performances.The modulated baseband signal from Matlab is dynamically fed into ADS,which includes transceiver front-end for co-simulation.The sub-block circuits of the transceiver front-end can be implemented using ADS and Cadence simulators.After system-level circuit simulation in ADS,the output signal is dynamically delivered to Matlab for demodulation.To simplify the use of the co-simulation platform,a graphical user interface(GUI)is constructed using Matlab.The parameters of the OFDM signals can be easily reconfigured on the GUI to simulate RF circuits with different modulation schemes.To demonstrate the effectiveness of the ISEE,a 3.5 GHz power amplifier is simulated and characterized using 20 MHz 16-and 64-QAM OFDM signals.展开更多
In response to the pain points of rapid iteration of front-end education technology,large differences in learner foundations,and a lack of practical scenarios,this paper combines generative artificial intelligence and...In response to the pain points of rapid iteration of front-end education technology,large differences in learner foundations,and a lack of practical scenarios,this paper combines generative artificial intelligence and AI agents to analyze the empowerment logic from three dimensions:knowledge ecology reconstruction,cognitive collaborative upgrading,and teaching methodology innovation.It explores its application scenarios in teaching and learning,sorts out challenges such as technology adaptation and learning dependence,and proposes paths such as building an exclusive AI ecosystem and optimizing the guidance mechanism of intelligent agents to provide support for the digital transformation of front-end education.展开更多
Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and e...Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets.展开更多
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat...Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.展开更多
Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness a...Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness and transparency,both correct and incorrect versions are displayed below.展开更多
Cracks represent a significant hazard to pavement integrity,making their efficient and automated extraction essential for effective road health monitoring and maintenance.In response to this challenge,we propose a cra...Cracks represent a significant hazard to pavement integrity,making their efficient and automated extraction essential for effective road health monitoring and maintenance.In response to this challenge,we propose a crack automatic extraction network model that integrates multi⁃scale image features,thereby enhancing the model’s capability to capture crack characteristics and adaptation to complex scenarios.This model is based on the ResUNet architecture,makes modification to the convolutional layer of the model,proposes to construct multiple branches utilizing different convolution kernel sizes,and adds a atrous spatial pyramid pooling module within the intermediate layers.In this paper,comparative experiments on the performance of the basic model,ablation experiments,comparative experiments before and after data augmentation,and generalization verification experiments are conducted.Comparative experimental results indicate that the improved model exhibits superior detail processing capability at crack edges.The overall performance of the model,as measured by the F1⁃score,reaches 71.03%,reflecting a 2.1%improvement over the conventional ResUNet.展开更多
To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance c...To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.展开更多
On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on ...On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.展开更多
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat...To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.展开更多
Currently,research in multi-body dynamics predominantly focuses on symmetric parallel mechanisms with multiple branches.However,for the working mechanism(WM)of a face-shovel hydraulic excavator,an asymmetric mechanism...Currently,research in multi-body dynamics predominantly focuses on symmetric parallel mechanisms with multiple branches.However,for the working mechanism(WM)of a face-shovel hydraulic excavator,an asymmetric mechanism with multiple closed loops,there is a significant lack of research on dynamic models that account for the mass and inertia of all its moving components.The main focus of this study is to research a dynamic model of multi-closed-loop multi-body planar mechanism considering all moving components.This paper introduces a novel WM for a face-shovel excavator,featuring 4 loops and 12 links.By loop decomposition,the kinematic equations of the 11 primary moving components of the WM,including position,velocity,angular velocity,acceleration,and angular acceleration,are accurately formulated.For comparative analysis,a simplified dynamic model of WM was established,considering only the boom,stick,and bucket.The complete dynamic models based on the virtual work principle were also established.The correctness of both the simplified and complete dynamic models was verified through numerical simulations in Adams software.A comparison of simplified and complete dynamic simulation results shows that the new complete dynamic model has the advantage of accuracy.This research proposes a kinematic and dynamic modeling method with reference significance for the kinematic and dynamic analysis of planar complex multi-loop mechanisms,laying a foundation for performance analysis and the design of excavator WMs.展开更多
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation front-end for the RF station.For that application,a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility.The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design.With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion,specially designed LO distribution net to increase isolation between adjacent channels,and external band-pass filter to realize expected up-conversion frequencies,high maintenance and modular front-end generalpurpose design has been implemented.Results of standard parameters show an R2 value of at least 99.991%in the range of-60-10 dBm for linearity,up to 18 dBm for P1dB,and up to 89 dBc for cross talk between adjacent channels.The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz;cumulative phase noise is 0.006°;and amplitude and phase stability are 0.022%and 0.034°,respectively.
基金Supported by the National Nature Science Foundation of China(No.61674037)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the National Power Grid Corp Science and Technology Project(No.SGTYHT/16-JS-198)the State Grid Nanjing Power Supply Company Project(No.1701052)
文摘This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by the noise canceling technique while the bandwidth is enhanced by gate inductive peaking technique. Measurement results show that, while the input frequency ranges from 100 MHz to 2.9 GHz, the proposed reconfigurable RF front-end achieves a controllable voltage conversion gain(VCG) from 18 dB to 39 dB. The measured maximum input third intercept point(IIP3) is-4.9 dBm and the minimum noise figure(NF) is 4.6 dB. The consumed current ranges from 16 mA to 26.5 mA from a 1.8 V supply voltage. The chip occupies an area of 1.17 mm^2 including pads.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金supported by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(No.HZQB-KCZYB-2020083).
文摘Traditionally,a continuous-wave(CW)signal is used to simulate RF circuits during the design procedure,while the fabricated circuits are measured by modulated signals in the test phase,because modulated signals are used in reality.It is almost impossible to use a CW signal to predict system performances,such as error vector magnitude(EVM),bit error rate(BER),etc.,of a transceiver front-end when dealing with complex modulated signals.This paper develops an integrated system evaluation engine(ISEE)to evaluate the system performances of a transceiver front-end or its sub-circuits.This crossdomain simulation platform is based on Matlab,advanced design system(ADS),and Cadence simulators to link the baseband signals and transceiver frond-end.An orthogonal frequency division multiplex(OFDM)modem is implemented in Matlab for evaluating the system performances.The modulated baseband signal from Matlab is dynamically fed into ADS,which includes transceiver front-end for co-simulation.The sub-block circuits of the transceiver front-end can be implemented using ADS and Cadence simulators.After system-level circuit simulation in ADS,the output signal is dynamically delivered to Matlab for demodulation.To simplify the use of the co-simulation platform,a graphical user interface(GUI)is constructed using Matlab.The parameters of the OFDM signals can be easily reconfigured on the GUI to simulate RF circuits with different modulation schemes.To demonstrate the effectiveness of the ISEE,a 3.5 GHz power amplifier is simulated and characterized using 20 MHz 16-and 64-QAM OFDM signals.
基金funded by two 2024 Ministry of Education supply-demand docking employment and education projects(Grant No.2024101679202,Grant No.2024121116066)2024“Innovation Strong Institute Project of Guangdong Polytechnic Institute”(Grant No.2024CQ-29)2022 Guangdong Province Undergraduate Online Open Course Guidance Committee Research Project(Grant No.2022ZXKC612).
文摘In response to the pain points of rapid iteration of front-end education technology,large differences in learner foundations,and a lack of practical scenarios,this paper combines generative artificial intelligence and AI agents to analyze the empowerment logic from three dimensions:knowledge ecology reconstruction,cognitive collaborative upgrading,and teaching methodology innovation.It explores its application scenarios in teaching and learning,sorts out challenges such as technology adaptation and learning dependence,and proposes paths such as building an exclusive AI ecosystem and optimizing the guidance mechanism of intelligent agents to provide support for the digital transformation of front-end education.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0134200)the National Natural Science Foundation of China(Grant No.12204214)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.GK202207012)QCYRCXM-2022-241。
文摘Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets.
基金supported by the National Natural Science Foundation of China(62302167,62477013)Natural Science Foundation of Shanghai(No.24ZR1456100)+1 种基金Science and Technology Commission of Shanghai Municipality(No.24DZ2305900)the Shanghai Municipal Special Fund for Promoting High-Quality Development of Industries(2211106).
文摘Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.
文摘Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness and transparency,both correct and incorrect versions are displayed below.
基金supported in part by the National Natural Science Foundation of China(No.42401166)the Open Fund of Key Laboratory of Polar Environment Monitoring and Public Governance,Ministry of Education(No.202405)the Key Research and Development Program of Hebei Province(No.23375405D).
文摘Cracks represent a significant hazard to pavement integrity,making their efficient and automated extraction essential for effective road health monitoring and maintenance.In response to this challenge,we propose a crack automatic extraction network model that integrates multi⁃scale image features,thereby enhancing the model’s capability to capture crack characteristics and adaptation to complex scenarios.This model is based on the ResUNet architecture,makes modification to the convolutional layer of the model,proposes to construct multiple branches utilizing different convolution kernel sizes,and adds a atrous spatial pyramid pooling module within the intermediate layers.In this paper,comparative experiments on the performance of the basic model,ablation experiments,comparative experiments before and after data augmentation,and generalization verification experiments are conducted.Comparative experimental results indicate that the improved model exhibits superior detail processing capability at crack edges.The overall performance of the model,as measured by the F1⁃score,reaches 71.03%,reflecting a 2.1%improvement over the conventional ResUNet.
基金supported by the National Natural Science Foundation of China(No.12472045)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2022-036)。
文摘To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.
文摘On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.
基金supported by the National Key R&D Program of China(No.2022YFB3205101)NSAF(No.U2230116)。
文摘To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.
基金Supported by Natural Science Foundation of China(Grant Nos.51975544,52205036)Industry-University Cooperation Collaborative Education Project of Ministry of Education(Grant No.220904701054946).
文摘Currently,research in multi-body dynamics predominantly focuses on symmetric parallel mechanisms with multiple branches.However,for the working mechanism(WM)of a face-shovel hydraulic excavator,an asymmetric mechanism with multiple closed loops,there is a significant lack of research on dynamic models that account for the mass and inertia of all its moving components.The main focus of this study is to research a dynamic model of multi-closed-loop multi-body planar mechanism considering all moving components.This paper introduces a novel WM for a face-shovel excavator,featuring 4 loops and 12 links.By loop decomposition,the kinematic equations of the 11 primary moving components of the WM,including position,velocity,angular velocity,acceleration,and angular acceleration,are accurately formulated.For comparative analysis,a simplified dynamic model of WM was established,considering only the boom,stick,and bucket.The complete dynamic models based on the virtual work principle were also established.The correctness of both the simplified and complete dynamic models was verified through numerical simulations in Adams software.A comparison of simplified and complete dynamic simulation results shows that the new complete dynamic model has the advantage of accuracy.This research proposes a kinematic and dynamic modeling method with reference significance for the kinematic and dynamic analysis of planar complex multi-loop mechanisms,laying a foundation for performance analysis and the design of excavator WMs.