期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two Performance Indicators Assisted Infill Strategy for Expensive Many⁃Objective Optimization
1
作者 Yi Zhao Jianchao Zeng Ying Tan 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期24-40,共17页
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i... In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems. 展开更多
关键词 expensive multiobjective optimization problems infill sample strategy evolutionary optimization algorithm
在线阅读 下载PDF
Breeding Particle Swarm Optimization for Railways Rolling Stock Preventive Maintenance Scheduling
2
作者 Tarek Aboueldah Hanan Farag 《American Journal of Operations Research》 2021年第5期242-251,共10页
The goal of railway rolling stock maintenance and replacement approaches is to reduce overall cost while increasing reliability which is multi objective op</span><span style="font-family:Verdana;"&g... The goal of railway rolling stock maintenance and replacement approaches is to reduce overall cost while increasing reliability which is multi objective op</span><span style="font-family:Verdana;">timization problem and a proper predictive maintenance scheduling table sh</span><span style="font-family:Verdana;">ould be adequately designed. We propose Breeding Particle Swarm Optimization (BPSO) model based on the concepts of Breeding Swarm and Genetic Algor</span><span style="font-family:Verdana;">ithm (GA) operators to design this table. The practical experiment shows th</span><span style="font-family:Verdana;">at our model reduces cost while increasing reliability compared to other models previously utilized. 展开更多
关键词 Railways Rolling Stock Predictive Maintenance Scheduling Table multi objective optimization problem Breeding Particle Swarm optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部