Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted pow...Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted power supply. The proposed converter uses four winding transformer with two primary windings and two secondary windings. The grid supply is connected to the first winding of transformer through rectifier-inverter for controlled power transfer. The solar energy is inverted and applied to the second winding of primary. Two output ports are considered. The circuit is designed to get zero current switching during turn-off and zero voltage switching during turn-on to alleviate the switching losses. The simulation results for the proposed configuration are presented in this paper.展开更多
A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces w...Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.展开更多
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su...A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.展开更多
This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good...This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.展开更多
Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained ...Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.展开更多
The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotiv...Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.展开更多
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i...The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
In this study, we apply the data envelopment analysis(DEA) model to quantitatively measure the input and output efficiency of 19 urban agglomerations in China from 2011 to 2016. The results show that the input and out...In this study, we apply the data envelopment analysis(DEA) model to quantitatively measure the input and output efficiency of 19 urban agglomerations in China from 2011 to 2016. The results show that the input and output efficiency of urban agglomerations is relatively not high, only a small number of that reach the optimal DEA efficiency. It is clearly revealed that there are the regions from the east that presents the better performance, followed by regions from the central and the west. The peer counts show that Zhusanjiao is taken into account 12 times which shows the importance here of the Zhusanjiao model.Considering the values for radial movements and the slack movements, respective urban agglomeration has their improving orientation towards the capital slack, the labor slack or the land slack. It offers a scientific decision-making of for healthy urbanization and high quality development.展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail...A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.展开更多
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-cod...The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.展开更多
Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by us...Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when specific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multidimensional case to separate the received data into mutually independent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Simulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding information than channel estimation based algorithms.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precodin...Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).展开更多
The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of...The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of printed devices in limits. The web tension of a R2R system is regulated by the use of integrated load cells and active dancer system for printed electronics applications using decentralized multi-input-single-output(MISO) regularized variable learning rate backpropagation artificial neural networks. The active dancer system is used before printing system to reduce disturbances in the web tension of process span. The classical PID control result in tension spikes with the change in roll diameter of winder and unwinder rolls. The presence of dancer in R2R system shows that improved web tension control in printing span and the web tension can be enhanced from 3.75 N to 4.75 N. The overshoot of system is less than ±2.5 N and steady state error is within ± 1 N where load cells have a signal noise of ±0.7 N. The integration of load cells and active dancer with self-adapting neural network control provide a solution to the web tension control of multispan roll-to-roll system.展开更多
For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often des...For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often desirable to the complex preprocessing at the transmitter.This paper proposes a multi-user beamforming algorithm with sub-codebook selection.Based on the minimal leakage criterion,the codebook selection,limited feed-forward and minimum mean square error(MMSE) detection are combined in the proposed algorithm.This avoids the complex channel matrix decomposition and inversion.Consequently,the computational complexity at the transmitter is significantly reduced.Simulation results show that the proposed algorithm performs better than existing beamforming algorithms.展开更多
User selection is necessary for multiuser multiple-input multiple-output(MIMO) downlink systems with block diagonalization(BD) due to the limited free spatial transmit dimensions.The pure user selection algorithms can...User selection is necessary for multiuser multiple-input multiple-output(MIMO) downlink systems with block diagonalization(BD) due to the limited free spatial transmit dimensions.The pure user selection algorithms can be improved by performing receive antenna selection(RAS) to increase sum rate.In this paper,a joint user and antenna selection algorithm,which performs user selection for sum rate maximization in the first stage and then performs antenna selection in the second stage,is proposed.The antenna selection process alternately drops one antenna with the poorest channel quality based on maximum determinant ranking(MDR) from the users selected during the first stage and activates one antenna with the maximum norm of projected channel from the remaining users.Simulation results show that the proposed algorithm significantly outperforms the algorithm only performing user selection as well as the algorithm combining user selection with MDR receive antenna selection in terms of sum rate.展开更多
文摘Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted power supply. The proposed converter uses four winding transformer with two primary windings and two secondary windings. The grid supply is connected to the first winding of transformer through rectifier-inverter for controlled power transfer. The solar energy is inverted and applied to the second winding of primary. Two output ports are considered. The circuit is designed to get zero current switching during turn-off and zero voltage switching during turn-on to alleviate the switching losses. The simulation results for the proposed configuration are presented in this paper.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2015008)the corresponding work was performed in the State Key Laboratory of Mechanics and Control of Mechanical Structures
文摘Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.
基金supported by National Natural Science Foundation of China (No. 60874116)Natural Science Foundation of Hebei Province (No. F2009000857)
文摘A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.
文摘This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.
文摘Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
基金Project supported by the Centre for Smart Grid and Information Convergence(CeSGIC)at Xi’an Jiaotong-Liverpool University,China
文摘Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
文摘In this study, we apply the data envelopment analysis(DEA) model to quantitatively measure the input and output efficiency of 19 urban agglomerations in China from 2011 to 2016. The results show that the input and output efficiency of urban agglomerations is relatively not high, only a small number of that reach the optimal DEA efficiency. It is clearly revealed that there are the regions from the east that presents the better performance, followed by regions from the central and the west. The peer counts show that Zhusanjiao is taken into account 12 times which shows the importance here of the Zhusanjiao model.Considering the values for radial movements and the slack movements, respective urban agglomeration has their improving orientation towards the capital slack, the labor slack or the land slack. It offers a scientific decision-making of for healthy urbanization and high quality development.
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
基金Project(51561135003)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(51338003)supported by the Key Project of National Natural Science Foundation of China
文摘A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.
基金supported by the National Natural Science Foundation of China(61101097)
文摘The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.
基金supported by the National Natural Science Foundation of China (61201282)
文摘Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when specific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multidimensional case to separate the received data into mutually independent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Simulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding information than channel estimation based algorithms.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
基金Supported by Shantou Youth Scientific Research Fund(No.YR11002)Distinguished Youth Fund in Higher Education of Guangdong Province(No.2012LYM_0064)
文摘Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF),Ministry of Education,Science and Technology,Korea(Grant No.2010-0026163)Strategy Technology Development Project,Ministry of Knowledge Economy,Korea(Grant No.10032149)
文摘The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of printed devices in limits. The web tension of a R2R system is regulated by the use of integrated load cells and active dancer system for printed electronics applications using decentralized multi-input-single-output(MISO) regularized variable learning rate backpropagation artificial neural networks. The active dancer system is used before printing system to reduce disturbances in the web tension of process span. The classical PID control result in tension spikes with the change in roll diameter of winder and unwinder rolls. The presence of dancer in R2R system shows that improved web tension control in printing span and the web tension can be enhanced from 3.75 N to 4.75 N. The overshoot of system is less than ±2.5 N and steady state error is within ± 1 N where load cells have a signal noise of ±0.7 N. The integration of load cells and active dancer with self-adapting neural network control provide a solution to the web tension control of multispan roll-to-roll system.
基金support by the National Natural Science Foundation of China (60702060)the 111 Project
文摘For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often desirable to the complex preprocessing at the transmitter.This paper proposes a multi-user beamforming algorithm with sub-codebook selection.Based on the minimal leakage criterion,the codebook selection,limited feed-forward and minimum mean square error(MMSE) detection are combined in the proposed algorithm.This avoids the complex channel matrix decomposition and inversion.Consequently,the computational complexity at the transmitter is significantly reduced.Simulation results show that the proposed algorithm performs better than existing beamforming algorithms.
基金the National Science and Technology Major Project (No.2009ZX03002-003)
文摘User selection is necessary for multiuser multiple-input multiple-output(MIMO) downlink systems with block diagonalization(BD) due to the limited free spatial transmit dimensions.The pure user selection algorithms can be improved by performing receive antenna selection(RAS) to increase sum rate.In this paper,a joint user and antenna selection algorithm,which performs user selection for sum rate maximization in the first stage and then performs antenna selection in the second stage,is proposed.The antenna selection process alternately drops one antenna with the poorest channel quality based on maximum determinant ranking(MDR) from the users selected during the first stage and activates one antenna with the maximum norm of projected channel from the remaining users.Simulation results show that the proposed algorithm significantly outperforms the algorithm only performing user selection as well as the algorithm combining user selection with MDR receive antenna selection in terms of sum rate.