Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising...Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas.展开更多
Ridge-furrow film mulching has been widely used as a water-saving and yield-increasing planting pattern in arid and semiarid regions.Planting density is also a vitally important factor influencing crop yield,and the o...Ridge-furrow film mulching has been widely used as a water-saving and yield-increasing planting pattern in arid and semiarid regions.Planting density is also a vitally important factor influencing crop yield,and the optimal planting density will vary in different environments(such as ridge-furrow film mulching).How the combination of film mulching and planting density will affect the growth,physiology,yield,and water and radiation use efficiencies of winter oilseed rape is not clear yet.Therefore,a three-year field experiment was conducted from 2017 to 2020 to explore the responses of leaf chlorophyll(Chl)content,net photosynthetic rate(P_(n)),leaf area index(LAI),aboveground dry matter(ADM),root growth and distribution,yield,evapotranspiration(ET),water use efficiency(WUE),and radiation use efficiency(RUE)of winter oilseed rape to different film mulching patterns(F,ridge-furrow planting with plastic film mulching over the ridges;N,flat planting without mulching)and planting densities(LD,100,000 plants ha^(-1);MD,150,000 plants ha^(-1);HD,200,000 plants ha^(-1)).The results showed that the F treatments led to significantly greater leaf Chl contents,P_(n),LAI,and ADM,and a stronger root system than treatments without film mulching throughout the whole winter rapeseed growing seasons.Winter oilseed rape in the MD treatments had better physiological(leaf Chl contents and P_(n))and growth(LAI,ADM,taproot,and lateral root)conditions than in LD and HD at the late growth period after stem-elongation.Grain yield in FMD was the greatest,and it was significantly greater by 34.8-46.0%,6.7-9.6%,87.8-108.3%,38.7-50.3%,and 50.2-61.8%compared to those of FLD,FHD,NLD,NMD,and NHD,respectively.Furthermore,the ET in FMD was equivalent to FLD and FHD,but was markedly lower by 12.2-18.4%,14.5-20.3%,and 14.6-20.4%than in NLD,NMD,and NHD.Finally,the WUE and RUE in FMD were significantly improved by 88.5-94.0%and 29.0-41.8%compared to NHD(the local conventional planting pattern and planting density for winter rapeseed).In summary,FMD is a favorable cultivation management strategy to save water,increase yield and improve resource utilization efficiencies in winter oilseed rape in Northwest China.展开更多
Biodegradable plastic film mulch (PFM) is considered an alternative to non-biodegradable PFM to mitigate the negative impacts of residual film.However,the agronomic performance of biodegradable PFM in comparison to no...Biodegradable plastic film mulch (PFM) is considered an alternative to non-biodegradable PFM to mitigate the negative impacts of residual film.However,the agronomic performance of biodegradable PFM in comparison to non-biodegradable PFM still needs to be tested.In this study,we evaluated the effects of biodegradable and non-biodegradable PFM on soil physicochemical properties,microbial community,and enzyme activities,as well as maize growth performance.Biodegradable and non-biodegradable PFM both increased soil temperature,water content,N content,and microbial biomass and maize yield by up to 30%,but decreased soil enzyme activities as compared to no mulching (control,CK).Most soil physicochemical properties,microbial community,and enzyme activities were similar under non-biodegradable and biodegradable PFM at the early stages of maize growth.However,at the late stages,soil temperature,water content,mineral N,NO_(3)^(-)-N,ammonia monooxygenase (AMO) activity,and total phospholipid fatty acids (PLFAs) decreased under biodegradable PFM owing to film fragmentation.White PFM increased soil temperature,water content,and total PLFAs at the early stages of maize growth but decreased soil mineral N and total PLFAs at the late stages,as compared to black PFM.As soil temperature and N availability were the major factors affecting soil microbial community,microbial activity decreased after the fragmentation of biodegradable PFM,owing to the decreased soil temperature,water content,and mineral N.Notably,biodegradable PFM could decrease NO_(3)^(-)-N accumulation in topsoil by decreasing N transformation due to the lower microbial and N-related enzyme (e.g.,AMO) activities,compared with non-biodegradable PFM,which may avoid negative environmental impacts,such as NO_(3)^(-)-N leaching or gas emission after harvest.Maize yield,height,aboveground biomass,and N uptake under biodegradable PFM were similar to those under non-biodegradable PFM during maize growth,implying that biodegradable PFM has no negative impact on crop growth and yield.In general,biodegradable PFM was equivalent to non-biodegradable PFM in terms of maize yield increase and N uptake,but was environmentally friendly.Therefore,biodegradable PFM can be used as an alternative to non-biodegradable PFM in semi-arid areas for sustainable agricultural practices.展开更多
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China.Despite its potential,there is limited understanding of how different mulching material...Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China.Despite its potential,there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas.To address this gap,we conducted a two-year(2020-2021)field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield.The experiment comprised six treatments,i.e.,plastic film-whole stalk spaced mulching in fall(PSF),plastic film-whole stalk spaced mulching in spring(PSS),black and silver plastic film-whole stalk spaced mulching in spring(BPSS),biodegradable film-whole stalk spaced mulching in spring(BSS),liquid film-whole stalk spaced mulching in spring(LSS),and non-mulching cultivation(CK).Results revealed that BPSS demonstrated the most significant yield increase,surpassing CK by a notable 10.0%and other mulching treatments by 2.4%-5.9%.The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation,particularly during hot season.Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching,leading to higher root growth indices(e.g.,length and surface area),as well as higher leaf photosynthetic rate and dry matter accumulation per plant.Additionally,BPSS maintained higher average soil moisture content within 0-100 cm depth compared with biodegradable mulching and liquid mulching.As a result,BPSS increased activities of urease,catalase,and alkaline phosphatase,as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn,facilitating nutrient accessibility by the plant.These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas,highlighting the potential of BPSS cultivation.展开更多
Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages,...Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.展开更多
Background Weed infestation in cotton has been reported to offer severe competition and cause yield reduction to a large extent.Weeding via cultural practices is time consuming,tedious,and expensive due to long durati...Background Weed infestation in cotton has been reported to offer severe competition and cause yield reduction to a large extent.Weeding via cultural practices is time consuming,tedious,and expensive due to long duration of cotton crop and regular monsoon rains during cotton production in India.Chemical weed control has been successfully utilized in cotton in the recent past.However,continuous use of similar herbicides leads to resistance in weeds against herbicides.And when sprayed to the field,herbicides not only suppress weeds but leave undesirable residues in the soil that are hazardous to the environment.Therefore,a study was performed at cotton research area at Chaudhary Charan Singh Haryana Agricultural University,Hisar,Haryana during two consecutive kharif seasons(2020 and 2021)to determine the most suitable and sustainable weed management strategy through the integration of chemical and cultural methods.Results Mulching with rice straw of 7.5 t ha^(-1)resulted in significantly higher cotton seed yield(3189 and 3084 kg ha^(-1))and better weed control in comparison to no mulch treatments(2990 and 2904 kg ha^(-1))in 2020 and 2021,respectively.Among various weed management levels,the significantly lowest cotton seed yield was recorded in untreated control(1841 and 1757 kg·ha^(-1)during 2020 and 2021,respectively)in comparison to other treatments while all other treatments were statistically at par with each other during both years of crop experimentation.Conclusion Mulching with rice straw of 7.5 t·ha^(-1)along with a pre-emergence application of pendimethalin(active ingredient)at 1.5 kg·ha^(-1)fb(followed by)one hoeings at 45 days after sowing(DAS)and fb glyphosate 2 kg·ha^(-1)(Shielded spray)at 90 DAS is a viable option for effective control of grassy and broadleaved weeds in Bt cotton in north-west India.展开更多
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
[Objective] The aim was to provide scientific reference for the production of silage maize in correlated regions of Tibet.[Method] Effects of film mulching on the growth period,growth traits and yield of silage maize ...[Objective] The aim was to provide scientific reference for the production of silage maize in correlated regions of Tibet.[Method] Effects of film mulching on the growth period,growth traits and yield of silage maize and weed were analyzed.[Result] Under the treatment of film mulching,the growth period of silage maize could be advanced for 7-16 d; the plant length,stem diameter and leaf area were increased; and the grain output was increased by 75.9%.According to the market price of silage maize in 2008,22 500 Yuan/hm^2 was increased.There were 13 kinds of weeds in silage maize field,which belonged to 13 genera,8 families.Among them,6 kinds of weeds belonged to Gramineae,among which Echinochloa crusgalli and Setaria viridis were dominated in the weed communities.Plantago depressa,Eragrostis pilosa and Malva verticillata var.chinensis could be totally controlled by the film mulching; meanwhile the others could be also controlled in a certain degree except Echinochloa crusgalli.[Conclusion] The plastic mulching planting is worth popularizing for the developing of animal husbandry and the incoming of the local farmers in Tibet.展开更多
Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of ...Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.展开更多
[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarca...[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarcane pro-duction. [Method]Four kinds of plastic films viz., normal colorless transparent plastic film, milky photodegradation weeding plastic film, black plastic film and gray-black plastic film were used in sugarcane cultivation by using no film mulching as the control. Soil temperature and moisture were measured during plastic film mulching period, and sugarcane agronomic traits such as emergence rate, tillering rate, plant hight, stalk diameter and effective stalk number were investigated during growth period, the cane yield and economic benefits were calculated during harvest period. [Result] The results showed that plastic film mulching could significantly increase soil temperature and moisture. Com-pared with the control, soil temperature was increased by 0.3-0.8 ℃ in three plastic films mulching treatment except for gray-black plastic film mulching. The soil moisture of all mulching treatments was 10.1%-17.4% higher than the control. Furthermore, the seedling emergence rate, tillering rate, effective stalk number and cane yield also could be improved using plastic film mulching,which were increased by 0.8%-9.9%, 20.6%-34.9%, 5190-10980 stalks/hm^2and6.4%-14.9% as compared to the control,while plant height and stalk diameter were found to be no significant effect by plastic film mulching. The results of benefit analysis indicated that, milky photodegradation weeding film mulching had the highest economic benefit, the second were normal colorless transparent plastic film mulching and black plastic film mulching, which were 5 987.2, 1 876.5 and 1 813.5 Yuan/hm^2 higher than the control. The gray-black film mulching treatment had poor benefit.[Conclusion] The milky photodegradation weeding plastic film could be vigorously extended in sugarcane production. Normal colorless transparent plastic film and black plastic film could be ex-tended gradually as a new kind of plastic film. The grayblack film should not be used for its higher cost and more thickness.展开更多
Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the ...Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the yield and output value of to- bacco in tillage treatment were improved by 22.72 % and 37.23 % compared with non-tillage treatment, respectively; the yield and output value of tobacco in rotation treatment were improved by 1.83% and 19.41% compared with continuous cropping treatment, respectively; the yield and output value of tobacco in straw mulching treatment were improved by 3.55% and 2.4% compared with non-straw mulching treatment, respectively, which indicated that tillage, rotation and straw mulching could improve the yield and output value of tobacco to a certain extent; especially, the yield and output value of tobacco increased significantly after plowing under rotation conditions. The contents of available phosphorus (AP), alkali-hydrolyzable nitrogen (AN), organic matter (OM), total nitrogen (TN) and total phosphorus (TP) in non- tillage treatment were 35.14%, 9.92%, 9.57%, 4.40% and 34.16% higher compared with tillage treatment; especially, under non-tillage conditions, soil pH and contents of available potassium (AK), AP, AN,OM,TN,TP and total potassium (TK) in continu- ous cropping field were 2.01%, 48.68%, 73.09%, 11.45%, 7.71%, 7.31%, 47.68% and 11.78% higher compared with rotation field, indicating that non-tillage treatment and continuous cropping could improve the total content and available content of organic matter, nitrogen and phosphorus. Therefore, from the perspective of soil fer- tility improvement and sustainable tobacco production, continuous cropping under non-tillage conditions might be the most appropriate cropping pattern for local soil fertility improvement; aiming at improving the yield and output value of tobacco, green manure-tobacco→, green manure/wheat/maize→green manure-tobacco ro- tation might be the most appropriate cropping pattern.展开更多
During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield,...During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield, and moisture content was examined across four distinct growth stages (initial, development, mid, and late) and at varying soil depths (0 - 30 cm and 30 - 60 cm). The study employed a randomised complete block design with four replications, encompassing control (T0), groundnut shells mulch (T1), black polythene mulch (T2), and white polythene mulch (T3) as treatments. The highest average Okra fresh pod yield, amounting to 23.4 t/ha, was achieved by implementing white plastic mulch, contrasting with the control treatment, which yielded the lowest at 22 t/ha. Notably, the control plots exhibited yield reductions of up to 32% compared to the plots employing white plastic mulching. The utilisation of mulch had a notable impact on the overall crop yield, with the superior quality evident in the treatment employing white plastic mulch (26 t/ha). The control treatment exhibited the lowest quality at 24.3 t/ha. Groundnut shell mulch influenced moisture conservation, but no significant variance was observed compared to the control plots. Therefore, the study suggests that polythene mulch may be the most suitable type to enhance the quality of okra production by conserving soil moisture. Among the biodegradable and non-biodegradable mulches used in this study, white polythene mulch was the most effective.展开更多
Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improv...Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM.展开更多
In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with low instable yield and tedious cultivation, Millet Research Institute of Hebei Academy of Agriculture and Fores...In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with low instable yield and tedious cultivation, Millet Research Institute of Hebei Academy of Agriculture and Forestry Sciences integrated a light simplified production technique integrating film mulching, hole sowing and fertilization with mechanized production, forming the light simplified foxtail millet production technique adopting film mulching and hole sowing. This study introduced the light simplified foxtail millet production technique adopting film mulching and hole sowing, including main links such as preparation before sowing, sowing, attached agricultural machines, field management, harvest and residual film recovery.展开更多
Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic fil...Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.展开更多
[Objective] The aim was to provide certain theoretical basis for stuides on the high yield and high quality cultivation of Lycium barbarum L..[Method] Under yield conditions,the accumulation of primary substances and ...[Objective] The aim was to provide certain theoretical basis for stuides on the high yield and high quality cultivation of Lycium barbarum L..[Method] Under yield conditions,the accumulation of primary substances and secondary substances of Lycium barbarum L.was studied under different mulching treatments.[Result] Different mulching methods all had a certain effects on the contents of main primary substances and main secondary substances in Lycium barbarum L.fruit.Among them,carbohydrates and flavonoids contents in Lycium barbarum L.were both obviously increased under straw-film mulching;carotenoid content was decreased relatively;hundred leaf weight,1 000-grain weight and yield of Lycium barbarum L.were increased to a certain extent,but there was no obvious effect on the shape of fruit.Besides,the yield of Lycium barbarum L.had no significant positive correlation with total carbohydrate and polysaccharide,almost had no correlation with flavonoids,and had no significant negative correlation with carotenoid.[Conclusion] The reasonable mulching could improve the yield and quality of Lycium barbarum L..展开更多
Different ground mulching treatments were designed to observe the effects on soil moisture content in a second-generation seed orchard of Pinus elliottii. The results showed that: (1) there were extreme differences...Different ground mulching treatments were designed to observe the effects on soil moisture content in a second-generation seed orchard of Pinus elliottii. The results showed that: (1) there were extreme differences in soil moisture content Ⅰ and soil moisture content Ⅲ, but no obvious difference in soil moisture content II was observed; and (2) the high-to-low order of soil moisture content Ⅰ under different ground mulching treatments was white film〉sawdust〉black film〉the control, and the highest value was higher than the lowest one by 26.69%; the high-to-low order of soil moisture content Ⅱ under different ground mulching treatments was white film〉black film〉sawdust〉the control, and the highest value was higher than the lowest one by 20.64%; and the high-to-low order of soil moisture content Ⅲ under different ground mulching treatments was black film〉white film〉sawdust〉the control, and the highest value was higher than the lowest one by 26.61%.展开更多
[Objective] This study aimed to provide theoretical basis and technologies for the application of planting in furrow and whole plastic-film mulching on double ridges. [Method] The conventional method was used to re-se...[Objective] This study aimed to provide theoretical basis and technologies for the application of planting in furrow and whole plastic-film mulching on double ridges. [Method] The conventional method was used to re-seed the bunch Gramineous forage in the degraded desert grassland in Yanchi, Ningxia Hui Autonomous Region. Four kinds of conservation treatments, namely, ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting with no ridging and mulching were conducted to the forage to analyze the effects of each treatment on soil moisture and seedling growth. [Result] From July to November, the moisture contents of ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting were respectivery 9.88%, 9.24%, 8.75% and 8.13%, showing significant differences among the treatments; the survival rates of re-seeding forage were 96.2% , 93.4% , 45.6% and 28.3% , and the mulching treatment showed significant difference with the unmulching treatments in survival rate. The treatment with black film mulching showed great advantage that its moisture content on ridge top had the buffering effect of "load shifting", and the soil moisture content of black mulching treatment increased 21.5% than the flatplanting. Black film mulching also had the largest water supplement amount in soil below 1 m. Although mulching cost too much, its overall benefits were higher than that with no mulching. [Conclusion] This study lays the experimental basis for the application of planting in furrow and whole plastic-film mulching on double ridges in improving degraded grassland desertification.展开更多
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金supported by the National Key Research and Development Program of China(2021YFE0101300 and 2021YFD1901102)the project supported by the Natural Science Basic Research Plan in Shaanxi Province,China(2023-JC-YB-185)the Ningxia Key Research and Development Program,China(2023BCF01018)。
文摘Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas.
基金supported by the National Natural Science Foundation of China(52479049 and 51909221)the National Key R&D Program of China(2021YFD1900700)+1 种基金the Key R&D Program of Shaanxi Province,China(2024NC-ZDCYL-02-08)the Key Laboratory of Crop Water Use and Regulation,Ministry of Agriculture and Rural Affairs,China(IFI-CWUR202402).
文摘Ridge-furrow film mulching has been widely used as a water-saving and yield-increasing planting pattern in arid and semiarid regions.Planting density is also a vitally important factor influencing crop yield,and the optimal planting density will vary in different environments(such as ridge-furrow film mulching).How the combination of film mulching and planting density will affect the growth,physiology,yield,and water and radiation use efficiencies of winter oilseed rape is not clear yet.Therefore,a three-year field experiment was conducted from 2017 to 2020 to explore the responses of leaf chlorophyll(Chl)content,net photosynthetic rate(P_(n)),leaf area index(LAI),aboveground dry matter(ADM),root growth and distribution,yield,evapotranspiration(ET),water use efficiency(WUE),and radiation use efficiency(RUE)of winter oilseed rape to different film mulching patterns(F,ridge-furrow planting with plastic film mulching over the ridges;N,flat planting without mulching)and planting densities(LD,100,000 plants ha^(-1);MD,150,000 plants ha^(-1);HD,200,000 plants ha^(-1)).The results showed that the F treatments led to significantly greater leaf Chl contents,P_(n),LAI,and ADM,and a stronger root system than treatments without film mulching throughout the whole winter rapeseed growing seasons.Winter oilseed rape in the MD treatments had better physiological(leaf Chl contents and P_(n))and growth(LAI,ADM,taproot,and lateral root)conditions than in LD and HD at the late growth period after stem-elongation.Grain yield in FMD was the greatest,and it was significantly greater by 34.8-46.0%,6.7-9.6%,87.8-108.3%,38.7-50.3%,and 50.2-61.8%compared to those of FLD,FHD,NLD,NMD,and NHD,respectively.Furthermore,the ET in FMD was equivalent to FLD and FHD,but was markedly lower by 12.2-18.4%,14.5-20.3%,and 14.6-20.4%than in NLD,NMD,and NHD.Finally,the WUE and RUE in FMD were significantly improved by 88.5-94.0%and 29.0-41.8%compared to NHD(the local conventional planting pattern and planting density for winter rapeseed).In summary,FMD is a favorable cultivation management strategy to save water,increase yield and improve resource utilization efficiencies in winter oilseed rape in Northwest China.
基金funded by the National Natural Science Foundation of China(No.41877086)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JZ-16)+1 种基金the UK Global Research Challenges Fundthe UK Natural Environment Research Council Project(No.NE/V005871/1)。
文摘Biodegradable plastic film mulch (PFM) is considered an alternative to non-biodegradable PFM to mitigate the negative impacts of residual film.However,the agronomic performance of biodegradable PFM in comparison to non-biodegradable PFM still needs to be tested.In this study,we evaluated the effects of biodegradable and non-biodegradable PFM on soil physicochemical properties,microbial community,and enzyme activities,as well as maize growth performance.Biodegradable and non-biodegradable PFM both increased soil temperature,water content,N content,and microbial biomass and maize yield by up to 30%,but decreased soil enzyme activities as compared to no mulching (control,CK).Most soil physicochemical properties,microbial community,and enzyme activities were similar under non-biodegradable and biodegradable PFM at the early stages of maize growth.However,at the late stages,soil temperature,water content,mineral N,NO_(3)^(-)-N,ammonia monooxygenase (AMO) activity,and total phospholipid fatty acids (PLFAs) decreased under biodegradable PFM owing to film fragmentation.White PFM increased soil temperature,water content,and total PLFAs at the early stages of maize growth but decreased soil mineral N and total PLFAs at the late stages,as compared to black PFM.As soil temperature and N availability were the major factors affecting soil microbial community,microbial activity decreased after the fragmentation of biodegradable PFM,owing to the decreased soil temperature,water content,and mineral N.Notably,biodegradable PFM could decrease NO_(3)^(-)-N accumulation in topsoil by decreasing N transformation due to the lower microbial and N-related enzyme (e.g.,AMO) activities,compared with non-biodegradable PFM,which may avoid negative environmental impacts,such as NO_(3)^(-)-N leaching or gas emission after harvest.Maize yield,height,aboveground biomass,and N uptake under biodegradable PFM were similar to those under non-biodegradable PFM during maize growth,implying that biodegradable PFM has no negative impact on crop growth and yield.In general,biodegradable PFM was equivalent to non-biodegradable PFM in terms of maize yield increase and N uptake,but was environmentally friendly.Therefore,biodegradable PFM can be used as an alternative to non-biodegradable PFM in semi-arid areas for sustainable agricultural practices.
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
基金financially supported by the Projects of National Key Research and Development Program of China(2021YFD1901101-5)the Special Major Research and Development Project of Shanxi Province(202101140601026-5)the Earmarked Fund for Modern Agro-industry Technology Research System(2023CYJSTX01-11).
文摘Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China.Despite its potential,there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas.To address this gap,we conducted a two-year(2020-2021)field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield.The experiment comprised six treatments,i.e.,plastic film-whole stalk spaced mulching in fall(PSF),plastic film-whole stalk spaced mulching in spring(PSS),black and silver plastic film-whole stalk spaced mulching in spring(BPSS),biodegradable film-whole stalk spaced mulching in spring(BSS),liquid film-whole stalk spaced mulching in spring(LSS),and non-mulching cultivation(CK).Results revealed that BPSS demonstrated the most significant yield increase,surpassing CK by a notable 10.0%and other mulching treatments by 2.4%-5.9%.The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation,particularly during hot season.Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching,leading to higher root growth indices(e.g.,length and surface area),as well as higher leaf photosynthetic rate and dry matter accumulation per plant.Additionally,BPSS maintained higher average soil moisture content within 0-100 cm depth compared with biodegradable mulching and liquid mulching.As a result,BPSS increased activities of urease,catalase,and alkaline phosphatase,as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn,facilitating nutrient accessibility by the plant.These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas,highlighting the potential of BPSS cultivation.
基金financially supported by the National Key Research & Development Program of China (Grant No.2022YFD1500402)the National Natural Science Foundation of China (Grant No.51809225)+1 种基金the China Postdoctoral Science Foundation (Grant Nos.2020T130559 and 2019M651977)the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20180929)。
文摘Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.
文摘Background Weed infestation in cotton has been reported to offer severe competition and cause yield reduction to a large extent.Weeding via cultural practices is time consuming,tedious,and expensive due to long duration of cotton crop and regular monsoon rains during cotton production in India.Chemical weed control has been successfully utilized in cotton in the recent past.However,continuous use of similar herbicides leads to resistance in weeds against herbicides.And when sprayed to the field,herbicides not only suppress weeds but leave undesirable residues in the soil that are hazardous to the environment.Therefore,a study was performed at cotton research area at Chaudhary Charan Singh Haryana Agricultural University,Hisar,Haryana during two consecutive kharif seasons(2020 and 2021)to determine the most suitable and sustainable weed management strategy through the integration of chemical and cultural methods.Results Mulching with rice straw of 7.5 t ha^(-1)resulted in significantly higher cotton seed yield(3189 and 3084 kg ha^(-1))and better weed control in comparison to no mulch treatments(2990 and 2904 kg ha^(-1))in 2020 and 2021,respectively.Among various weed management levels,the significantly lowest cotton seed yield was recorded in untreated control(1841 and 1757 kg·ha^(-1)during 2020 and 2021,respectively)in comparison to other treatments while all other treatments were statistically at par with each other during both years of crop experimentation.Conclusion Mulching with rice straw of 7.5 t·ha^(-1)along with a pre-emergence application of pendimethalin(active ingredient)at 1.5 kg·ha^(-1)fb(followed by)one hoeings at 45 days after sowing(DAS)and fb glyphosate 2 kg·ha^(-1)(Shielded spray)at 90 DAS is a viable option for effective control of grassy and broadleaved weeds in Bt cotton in north-west India.
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
基金Supported by "Technological Demonstration of Large-scale Planting of Fine Quality Forage Grass and Crops" Sponsored by the Ministry of Science and Technology (2007BAD80B03)"Forage Production System Research" Sponsored by the Ministry of Science and Technology (2007BAD63B04)~~
文摘[Objective] The aim was to provide scientific reference for the production of silage maize in correlated regions of Tibet.[Method] Effects of film mulching on the growth period,growth traits and yield of silage maize and weed were analyzed.[Result] Under the treatment of film mulching,the growth period of silage maize could be advanced for 7-16 d; the plant length,stem diameter and leaf area were increased; and the grain output was increased by 75.9%.According to the market price of silage maize in 2008,22 500 Yuan/hm^2 was increased.There were 13 kinds of weeds in silage maize field,which belonged to 13 genera,8 families.Among them,6 kinds of weeds belonged to Gramineae,among which Echinochloa crusgalli and Setaria viridis were dominated in the weed communities.Plantago depressa,Eragrostis pilosa and Malva verticillata var.chinensis could be totally controlled by the film mulching; meanwhile the others could be also controlled in a certain degree except Echinochloa crusgalli.[Conclusion] The plastic mulching planting is worth popularizing for the developing of animal husbandry and the incoming of the local farmers in Tibet.
基金Supported by National Sweet Potato Industrial Technology System(CARS-11-C-16)~~
文摘Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.
基金Supported by National State Supporting Program(2012BAD40B04-3)Guangxi Bagu Scholar Program(No.[2013]3)~~
文摘[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarcane pro-duction. [Method]Four kinds of plastic films viz., normal colorless transparent plastic film, milky photodegradation weeding plastic film, black plastic film and gray-black plastic film were used in sugarcane cultivation by using no film mulching as the control. Soil temperature and moisture were measured during plastic film mulching period, and sugarcane agronomic traits such as emergence rate, tillering rate, plant hight, stalk diameter and effective stalk number were investigated during growth period, the cane yield and economic benefits were calculated during harvest period. [Result] The results showed that plastic film mulching could significantly increase soil temperature and moisture. Com-pared with the control, soil temperature was increased by 0.3-0.8 ℃ in three plastic films mulching treatment except for gray-black plastic film mulching. The soil moisture of all mulching treatments was 10.1%-17.4% higher than the control. Furthermore, the seedling emergence rate, tillering rate, effective stalk number and cane yield also could be improved using plastic film mulching,which were increased by 0.8%-9.9%, 20.6%-34.9%, 5190-10980 stalks/hm^2and6.4%-14.9% as compared to the control,while plant height and stalk diameter were found to be no significant effect by plastic film mulching. The results of benefit analysis indicated that, milky photodegradation weeding film mulching had the highest economic benefit, the second were normal colorless transparent plastic film mulching and black plastic film mulching, which were 5 987.2, 1 876.5 and 1 813.5 Yuan/hm^2 higher than the control. The gray-black film mulching treatment had poor benefit.[Conclusion] The milky photodegradation weeding plastic film could be vigorously extended in sugarcane production. Normal colorless transparent plastic film and black plastic film could be ex-tended gradually as a new kind of plastic film. The grayblack film should not be used for its higher cost and more thickness.
基金Supported by Study on Sustainable Production and Cultivation System and Nutrient Management for High-quality TobaccoSpecial Fund for Tobacco from Genetic Engineering Project of Sichuan Provincial Department of Finance(2013YCZX-003)~~
文摘Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the yield and output value of to- bacco in tillage treatment were improved by 22.72 % and 37.23 % compared with non-tillage treatment, respectively; the yield and output value of tobacco in rotation treatment were improved by 1.83% and 19.41% compared with continuous cropping treatment, respectively; the yield and output value of tobacco in straw mulching treatment were improved by 3.55% and 2.4% compared with non-straw mulching treatment, respectively, which indicated that tillage, rotation and straw mulching could improve the yield and output value of tobacco to a certain extent; especially, the yield and output value of tobacco increased significantly after plowing under rotation conditions. The contents of available phosphorus (AP), alkali-hydrolyzable nitrogen (AN), organic matter (OM), total nitrogen (TN) and total phosphorus (TP) in non- tillage treatment were 35.14%, 9.92%, 9.57%, 4.40% and 34.16% higher compared with tillage treatment; especially, under non-tillage conditions, soil pH and contents of available potassium (AK), AP, AN,OM,TN,TP and total potassium (TK) in continu- ous cropping field were 2.01%, 48.68%, 73.09%, 11.45%, 7.71%, 7.31%, 47.68% and 11.78% higher compared with rotation field, indicating that non-tillage treatment and continuous cropping could improve the total content and available content of organic matter, nitrogen and phosphorus. Therefore, from the perspective of soil fer- tility improvement and sustainable tobacco production, continuous cropping under non-tillage conditions might be the most appropriate cropping pattern for local soil fertility improvement; aiming at improving the yield and output value of tobacco, green manure-tobacco→, green manure/wheat/maize→green manure-tobacco ro- tation might be the most appropriate cropping pattern.
文摘During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield, and moisture content was examined across four distinct growth stages (initial, development, mid, and late) and at varying soil depths (0 - 30 cm and 30 - 60 cm). The study employed a randomised complete block design with four replications, encompassing control (T0), groundnut shells mulch (T1), black polythene mulch (T2), and white polythene mulch (T3) as treatments. The highest average Okra fresh pod yield, amounting to 23.4 t/ha, was achieved by implementing white plastic mulch, contrasting with the control treatment, which yielded the lowest at 22 t/ha. Notably, the control plots exhibited yield reductions of up to 32% compared to the plots employing white plastic mulching. The utilisation of mulch had a notable impact on the overall crop yield, with the superior quality evident in the treatment employing white plastic mulch (26 t/ha). The control treatment exhibited the lowest quality at 24.3 t/ha. Groundnut shell mulch influenced moisture conservation, but no significant variance was observed compared to the control plots. Therefore, the study suggests that polythene mulch may be the most suitable type to enhance the quality of okra production by conserving soil moisture. Among the biodegradable and non-biodegradable mulches used in this study, white polythene mulch was the most effective.
基金financially supported by the National Natural Science Foundation of China (31270553)the National Basic Research Program of China (2009CB118604)the Special Fund for Agro-Scientific Research in the Public Interest of China (201103003)
文摘Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM.
基金Supported by the National Key Technology Research and Development Program(2014BAD07B01-02)Science and Technology Demonstration Project of Bohai Granary in Hebei ProvinceSpecial Fund of Agro-scientific Research in Public Interest(201303133-1-6)~~
文摘In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with low instable yield and tedious cultivation, Millet Research Institute of Hebei Academy of Agriculture and Forestry Sciences integrated a light simplified production technique integrating film mulching, hole sowing and fertilization with mechanized production, forming the light simplified foxtail millet production technique adopting film mulching and hole sowing. This study introduced the light simplified foxtail millet production technique adopting film mulching and hole sowing, including main links such as preparation before sowing, sowing, attached agricultural machines, field management, harvest and residual film recovery.
文摘Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.
基金Supported by National Natural Science Foundation of China(30860227)Natural Science Foundation of Ningxia Province(NZ0603,NZ0639)~~
文摘[Objective] The aim was to provide certain theoretical basis for stuides on the high yield and high quality cultivation of Lycium barbarum L..[Method] Under yield conditions,the accumulation of primary substances and secondary substances of Lycium barbarum L.was studied under different mulching treatments.[Result] Different mulching methods all had a certain effects on the contents of main primary substances and main secondary substances in Lycium barbarum L.fruit.Among them,carbohydrates and flavonoids contents in Lycium barbarum L.were both obviously increased under straw-film mulching;carotenoid content was decreased relatively;hundred leaf weight,1 000-grain weight and yield of Lycium barbarum L.were increased to a certain extent,but there was no obvious effect on the shape of fruit.Besides,the yield of Lycium barbarum L.had no significant positive correlation with total carbohydrate and polysaccharide,almost had no correlation with flavonoids,and had no significant negative correlation with carotenoid.[Conclusion] The reasonable mulching could improve the yield and quality of Lycium barbarum L..
基金Supported by the "948" Program of State Forestry Administration(2013-4-37)~~
文摘Different ground mulching treatments were designed to observe the effects on soil moisture content in a second-generation seed orchard of Pinus elliottii. The results showed that: (1) there were extreme differences in soil moisture content Ⅰ and soil moisture content Ⅲ, but no obvious difference in soil moisture content II was observed; and (2) the high-to-low order of soil moisture content Ⅰ under different ground mulching treatments was white film〉sawdust〉black film〉the control, and the highest value was higher than the lowest one by 26.69%; the high-to-low order of soil moisture content Ⅱ under different ground mulching treatments was white film〉black film〉sawdust〉the control, and the highest value was higher than the lowest one by 20.64%; and the high-to-low order of soil moisture content Ⅲ under different ground mulching treatments was black film〉white film〉sawdust〉the control, and the highest value was higher than the lowest one by 26.61%.
基金Supported by the Key Technologies R & D Program of the Ningxia Hui Autonomous Region (2011ZYN051)~~
文摘[Objective] This study aimed to provide theoretical basis and technologies for the application of planting in furrow and whole plastic-film mulching on double ridges. [Method] The conventional method was used to re-seed the bunch Gramineous forage in the degraded desert grassland in Yanchi, Ningxia Hui Autonomous Region. Four kinds of conservation treatments, namely, ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting with no ridging and mulching were conducted to the forage to analyze the effects of each treatment on soil moisture and seedling growth. [Result] From July to November, the moisture contents of ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting were respectivery 9.88%, 9.24%, 8.75% and 8.13%, showing significant differences among the treatments; the survival rates of re-seeding forage were 96.2% , 93.4% , 45.6% and 28.3% , and the mulching treatment showed significant difference with the unmulching treatments in survival rate. The treatment with black film mulching showed great advantage that its moisture content on ridge top had the buffering effect of "load shifting", and the soil moisture content of black mulching treatment increased 21.5% than the flatplanting. Black film mulching also had the largest water supplement amount in soil below 1 m. Although mulching cost too much, its overall benefits were higher than that with no mulching. [Conclusion] This study lays the experimental basis for the application of planting in furrow and whole plastic-film mulching on double ridges in improving degraded grassland desertification.