Investigating the spatial distribution of vegetation in monsoonal-climate-dominated high mountain area and detecting its changes that occurred in paraglacial areas is crucial for understanding the cascading environmen...Investigating the spatial distribution of vegetation in monsoonal-climate-dominated high mountain area and detecting its changes that occurred in paraglacial areas is crucial for understanding the cascading environmental effects of shrinking glaciers.We used Landsat images from 1994 to 2022,obtained landscape distribution patterns of glaciers and vegetation in Mt.Gongga,and detected paraglacial vegetation changes under deglaciating environments.We observed there is a pronounced difference in glacier and vegetation coverage between the eastern and western slopes in Mt.Gongga,the eastern slope occupies 78.68% of vegetation area and 61.02% of glacier area,whilst the western slope occupies lower area.Exaggerate warming accelerated glacier retreat,and proglacial areas are generally characterized by very fast primary succession,resulting in an increase of 0.32 km^(2)in vegetation area within two typical glacier forefields on the eastern slope.The phenomenon of paraglacial slope failure following glacier thinning is widespread in Mt.Gongga,resulting in vegetation area decreased by 0.34 km^(2).Concurrently,the fast retreat of glaciers and changes in ice surface geomorphology have caused rapid dynamics in supraglacial vegetation developed on its lower debris-covered sections.We suggested that rapid changes of temperate glaciers can significantly influence paraglacial landform,leading to rapid dynamic changes of vegetation in a balance between colonization and destruction.展开更多
As part of“The Earth Summit Mission-2022”during the second Tibetan Plateau Scientific Expedition and Research(STEP)in April and May 2022,we conducted the ozone sounding experiment(an ozonesonde mated to a radiosonde...As part of“The Earth Summit Mission-2022”during the second Tibetan Plateau Scientific Expedition and Research(STEP)in April and May 2022,we conducted the ozone sounding experiment(an ozonesonde mated to a radiosonde)at Mt.Qomolangma Base Camp(MQBC;86.85°E,28.14°N;5200 m),a location at an extremely high altitude.A total of ten sounding profiles were obtained between April 30 and May 06,2022,of which seven profiles were above35 km in altitude,with a maximum detection altitude up to 39.0 km.This study presents the temporal variation and vertical distributions of atmospheric temperature,humidity,and ozone during the MQBC campaign.The averaged ozone concentration was high(68.3 ppbv)at the surface and then increased smoothly until peaking(~110 ppbv)in the middle troposphere(approximately 10 km),and afterward,the ozone concentration increased rapidly from the upper troposphere to a maximum of~10 ppmv at~30 km.The enhanced ozone concentration in the middle troposphere was associated with the blocking high pressure,and transport from the southern flank of the Himalayas occurred during the campaign period.The average total ozone column was 291.9±21.4 DU for the seven profiles exceeding 35km in altitude.The ozonesonde measurements were also compared with the vertical ozone profiles retrieved from the space-borne ozone products from the Microwave Limb Sounder(MLS)onboard the Aura satellite and the Atmospheric Infrared Sounder(AIRS)onboard the Aqua satellite.展开更多
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations...Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006 we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 + 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91± 0.035 km2 and glacial lakes expanded by 36.88 + 0.035 kin2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700-6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.展开更多
Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filte...Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filter and accumulated variance analysis methods, the spatial and temporal patterns of the climatic change in this region were analyzed. The main findings can be summarized as follows: (1) There is obvious ascending tendency for the interannual change of air temperature in Mt. Qomolangma region and the ascending tendency of Tingri, the highest station, is the most significant. The rate of increasing air temperature is 0.234℃/decade in Mt. Qomolangma region, 0.302 ℃/decade in Tingxi. The air temperature increases more strongly in non-growing season. (2) Compared with China and the global average, the warming of Mt. Qomolangma region occurred early. The linear rates of temperature increase in Mt. Qomolangma region exceed those for China and the global average in the same period. This is attributed to the sensitivity of mountainous regions to climate change. (3) The southern and northern parts of Mt. Qomolangma region are quite different in precipitation changes. Stations in the northern part show increasing trends but are not statistically significant. Nyalam in the southern part shows a decreasing trend and the sudden decreasing of precipitation occurred in the early 1990s. (4) Compared with the previous studies, we find that the warming of Mt. Qomolangma high-elevation region is most significant in China in the same period. The highest automatic meteorological comprehensive observation station in the world set up at the base camp of Mt. Qomolangma with a height of 5032 m a.s.l will play an important role in monitoring the global climate change.展开更多
Glacial features in the geological record provide essential clues about past behavior of climate. Of the numerous physical systems on earth, glaciers are one of most responsive to climate change, especially small glac...Glacial features in the geological record provide essential clues about past behavior of climate. Of the numerous physical systems on earth, glaciers are one of most responsive to climate change, especially small glaciers, their direct marginal response taking only a few years or decades to be expressed. Accelerating recession of modern glaciers raises the issue of the climate's impact on water runoff. Data based on topographic maps and Advanced Spaceborne Thermal Emission and Radiometer (ASTER) imagery show the trends that are highly variable over time and within the region. An analysis of the local topographic settings of very small (〈0.5 km2) glaciers was conducted to investigate their influence on recent changes in these glaciers. Among 137 glaciers, 12 disappeared completely. The study reveals that glaciers situated in favorable locations had tiny relative area reduction, while those in less favorable settings generally had large area loss or even disappeared. It is suggested that most of the small glaciers studied have retreated as far as they are likely to under the climatic conditions of the late 20th century. Undoubtedly, the strong retreating of small glaciers exerts adverse effects on the hydro- logic cycle and local socioeconomic development.展开更多
Aerosol and snow samples were collected at ablation zone of Baishui (白水) Glacier No. 1, Mt. Yulong (玉龙), from May to June, 2006. The concentrations of Cl^-, NO3^-, SO4^2-, Na^+, K^+, Mg^2+, and Ca^2+ were ...Aerosol and snow samples were collected at ablation zone of Baishui (白水) Glacier No. 1, Mt. Yulong (玉龙), from May to June, 2006. The concentrations of Cl^-, NO3^-, SO4^2-, Na^+, K^+, Mg^2+, and Ca^2+ were determined by ion chromatograph both in aerosol and snow samples. The average total aerosol loading is 25.45 neq.scm^-1, NO3^- and Na^+ are the dominant soluble ions in the aerosol, accounting for 39% and 21% of average total aerosol loading, respectively. Monsoon circulation reduces the concentration of most ions, indicating that wet scavenging is effective for aerosol particles. In snow samples, SO4^2- and Ca^2+ are the dominant anion and cation, respectively. A lower Na^+/Cl^- ratio was found in fresh snow samples compared to the higher ratio that was found in aerosol samples. Analyzing the difference in SO4^2- and NO3^- in air and fresh snow indicated that the aerosol was influenced by local circulation, but the components in fresh snow samples were from long-distance transport. Enrichment of NO3^- in aerosol samples is attributed to motor exhaust emissions from tourism by calculating the SO4^2-/NO3^- ratio in aerosol and fresh snow samples. The temporal variation and correlation coefficients between soluble species in aerosol samples suggest that Cl^-, Na^+ and K^+ come from sea-salt aerosol, and SO4^2-, Mg^2+ and Ca^2+ are from continental crust sources.展开更多
Based on the NOAA AVHRR-NDVI data from 1981 to 2001, the digitalized China Vegetation Map (1:1,000,000), DEM, temperature and precipitation data, and field investigation, the spatial patterns and vertical character...Based on the NOAA AVHRR-NDVI data from 1981 to 2001, the digitalized China Vegetation Map (1:1,000,000), DEM, temperature and precipitation data, and field investigation, the spatial patterns and vertical characteristics of natural vegetation changes and their influencing factors in the Mt. Qomolangma Nature Reserve have been studied. The results show that: (1) There is remarkable spatial difference of natural vegetation changes in the Mt. Qomolangma Nature Reserve and stability is the most common status. There are 5.04% of the whole area being seriously degraded, 13.19% slightly degraded, 26.39% slightly improved, 0.97% significantly improved and 54.41% keeping stable. The seriously and slightly degraded areas, which mostly lie in the south of the reserve, are along the national boundaries. The areas of improved vegetation lie in the north of the reserve and the south side of the Yarlung Zangbo River. The stable areas lie between the improved and degraded areas. Degradation decreases with elevation. (2) Degeneration in the Mt. Qomolangma Nature Reserve mostly affects shrubs, needle-leaved forests and mixed forests. (3) The temperature change affects the natural vegetation changes spatially while the integration of temperature changes, slopes and aspects affects the natural vegetation change along the altitude gradients. (4) It is the overuse of resources that leads to the vegetation degeneration in some parts of the Mt. Qomolangma Nature Reserve.展开更多
The distribution of small mammals in mountainous environments across different elevations can provide important information on the effects of climate change on the dispersal of species. However, few studies conducted ...The distribution of small mammals in mountainous environments across different elevations can provide important information on the effects of climate change on the dispersal of species. However, few studies conducted on Afromontane ecosystems have compared the altitudinal patterns of small mammal diversity. We investigated the species diversity and abundance of non-volant small mammals(hereafter ‘small mammals')on Mt. Kenya, the second tallest mountain in Africa,using a standard sampling scheme. Nine sampling transects were established at intervals of 200 m on the eastern(Chogoria) and western(Sirimon) slopes.A total of 1 905 individuals representing 25 species of small mammals were trapped after 12 240 trap-nights.Abundance was highest at mid-elevations on both slopes.However, species richness and their distribution patterns differed between the two slopes. More species were recorded on Chogoria(24) than on Sirimon(17). On Chogoria, species richness was higher at mid-high elevations, with a peak at mid-elevation(2 800 m a.s.l.),whereas species richness showed little variation on the Sirimon slope. These results indicate that patterns of species diversity can differ between slopes on the same mountain. In addition, we extensively reviewed literature on Mt. Kenya's mammals and compiled a comprehensive checklist of 76 mammalian species. However, additional research is required to improve our understanding of smal mammal diversity in mountain habitats in Africa.展开更多
To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy di...To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy dispersive X-ray (EDX) signal, totally 1500 particles were classed into 7 groups: soot; aluminosilicates; fly ash; calcium sulfates; Ca/Mg carbonates; metal oxides; and biological particles and carbon fragments. The size distribution and number fractions of different particle groups exhibited distinct seasonal variations between non-monsoon and monsoon periods, which are clearly related to the differences in air mass pathways. Specifically, the relative abundance of soot in non-monsoon period (25%) was much higher than that in monsoon period (14%), indicating Mt. Qomolangma region received more anthropogenic influence in non-monsoon than monsoon period.展开更多
Great change, associated with global warming, has occurred at the Hailuogou (海螺沟) glacier, Mt. Gongga (贡嘎), China, since the early 20th century. Various data indicate that the glacier has retreated 1 822 m in...Great change, associated with global warming, has occurred at the Hailuogou (海螺沟) glacier, Mt. Gongga (贡嘎), China, since the early 20th century. Various data indicate that the glacier has retreated 1 822 m in the past 106 years, with an annual mean retreat of 17.2 m, and the front elevation has risen by 300 m since 1823. Comparison of glacier variations and temperature fluctuations in China and the Northern Hemisphere, over the last 100 years, indicates that glacier retreat stages occurred during the warm phase, and vice versa. Mass balance records during 1959/60-2003/04 have shown that the glacier has suffered a constant mass loss of snow and ice. The accumulated mass balance, -10.83 m water equivalent, indicates an annual mean value of -0.24 m water equivalent. The correlation between the mass balance and temperature is significant, which also indicates that climate warming is the crucial cause of glacier loss. Local hydrological and climatic data demonstrate that runoff from the glacier has been increasing both seasonally and annually. The correlation analysis and trend analysis indicate that ice and snow melted water is the main cause of an increase in the runoff. As the climate has become warmer, changes in the glacier surface morphology have obviously occurred. These include a decrease in glacier thickness, enlargement of glacial caves, and reduction of the size of clefts on the glacier surface. The ablation period has lengthened and the ablation area has expanded. A variety of factors thus provide evidence that the Hailuogou glacier has suffered a rapid loss of snow and ice as a result of climatic warming.展开更多
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the sp...Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.展开更多
The concentrations of heavy metals Ba, Pb, Cu, Zn and Co in snow pit collected in September, 2005 from the accumulation area of the East Rongbuk Glacier (6523 m a.s.l.), which lies on the northern slope of Mt. Qomol...The concentrations of heavy metals Ba, Pb, Cu, Zn and Co in snow pit collected in September, 2005 from the accumulation area of the East Rongbuk Glacier (6523 m a.s.l.), which lies on the northern slope of Mt. Qomolangma, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations (pg/ml) of heavy metals are Ba2-227, Co2.8-15.7, Cu10-120, Zn29-4948 and Pb14-142, respectively. The 5180 was determined by MAT-252. The time period of the snow pit spans from autumn 2005 to summer 2004. Seasonal variations of the concentrations and δ^18O are observed, of which Pb, Cu, Zn and Co are much lower in summer monsoon season than that in non summer monsoon season, suggesting that different sources of heavy metals contributed to the site. EFc (crustal enrichment factors) is Co3.6, Cu27, Pb33 and Zn180, respectively. Higher EFo values of Pb, Cu and Zn suggest that Pb, Cu especially Zn are mainly contributed by anthropogenic sources.展开更多
Mt. Qomolangma (Everest), the highest mountain peak in the world, has little been studied extensively from a meteorological perspective, mostly because of the remoteness of the region and the resultant lack of meteo...Mt. Qomolangma (Everest), the highest mountain peak in the world, has little been studied extensively from a meteorological perspective, mostly because of the remoteness of the region and the resultant lack of meteorological data. An automatic weather station (AWS), the highest in the world, was set up on 27 April 2005 at the Ruopula Pass (6523 m asl) on the northern slope of Mt. Qomolangma by the team of integrated scientific expedition to Mt. Qomolangma. Here its meteorological characteristics were analyzed according to the lo-minute-averaged and 24-hour records of air temperature, relative humidity, air pressure and wind from 1 May to 22 July 2005. It is shown that at 6523 m of Mt. Qomolangma, these meteorological elements display very obvious diurnal variations, and the character of averaged diurnal variation is one-peak-and-one-vale for air temperature, one-vale for relative humidity, two-peak-and-two-vale for air pressure, and one-peak with day-night asymmetry for wind speed. In the 83 days, all the air temperature, relative humidity and air pressure increased with some different fluctuations, while wind speed decreased gradually and wind direction turned from north to south. The variations of relative humidity had great fluctuations and obvious local differences. Then the paper discusses the reason for the characters of diurnal and daily variations. Compared with the corresponding records in May 1960, 5-day-averaged maximums, minimums and diurnal variations of air temperature in May 2005 were apparently lower.展开更多
Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because...Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another,or among lineages.In this study,we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt.Gongga,the highest peak in the Hengduan Mountain Range in central China,and a mountain where comprehensive studies of avian diversity are still lacking.Methods:We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l.between 2012 and 2017.To test the relationship between bird species richness and environmental factors,we examined the relative importance of seven ecological variables on breeding season distribution patterns:land area(LA),mean daily temperature(MDT),seasonal temperature range(STR),the mid-domain effect(MDE),seasonal precipitation(SP),invertebrate biomass(IB) and enhanced vegetation index(EVI).Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.Results:A total of 219 bird species were recorded in the field,of which 204 were recorded during the breeding season(April–August).Species richness curves(calculated separately for total species,large-ranged species,and smallranged species) were all hump-shaped.Large-ranged species contributed more to the total species richness pattern than small-ranged species.EVI and IB were positively correlated with total species richness and small-ranged species richness.LA and MDT were positively correlated with small-ranged species richness,while STR and SP were negatively correlated with small-ranged species richness.MDE was positively correlated with large-ranged species richness.When we considered the combination of candidate factors using multiple regression models and model-averaging,total species richness and large-ranged species richness were correlated with STR(negative) and MDE(positive),while small-ranged species richness was correlated with STR(negative) and IB(positive).Conclusions:Although no single key factor or suite of factors could explain patterns of diversity,we found that MDE,IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories.Model-averaging indicates that small-ranged species appear to be mostly influenced by IB,as opposed to large-ranged species,which exhibit patterns more consistent with the MDE model.Our data also indicate that the species richness varied between seasons,offering a promising direction for future work.展开更多
Different types of vegetation patches are alternately and randomly distributed in a timberline ecotone where the upper limit is the treeline and the lower limit is the timberline.However,most studies on timberline/tre...Different types of vegetation patches are alternately and randomly distributed in a timberline ecotone where the upper limit is the treeline and the lower limit is the timberline.However,most studies on timberline/treeline altitudinal distributions have simplified timberline or treeline as continuous curves and disregarded the fuzziness of timberline/treeline and the randomness of different vegetation patch distributions in a timberline ecotone.To study the altitudinal distribution characteristics of timberline and treeline from the perspective of uncertainty theory,we constructed the timberline and treeline elevation cloud models in Mt.Namjagbarwa in east Himalayas.Subsequently,we established multiple linear regression models by using nine influencing factors,namely,aspect,slope,topographic relief,dryness index,average temperature in January and July,latitude,summit syndrome(represented by the vertical distance from the peak),and snow effect(represented by the nearest distance from the snow)as independent variables,and the elevations of timberline/treeline as dependent variables.Then we compared the contributions of the nine factors in timberline,treeline,and the core and peripheral areas of timberline and treeline.The results show that 1)the timberline/treeline elevation cloud model can represent the overall characteristics(especially the uncertainty)of the altitudinal distributions of the timberline/treeline well.The uncertainty of treeline’s altitudinal distribution is higher than that of timberline(entropy and hyper entropy:207.59 m and 70.36 m for treeline elevation cloud;entropy and hyper entropy:191.17 m and 50.13 m for timberline elevation cloud).2)The influence of climate and topography on timberline and treeline are similar.The average temperature in July has a significant negative correlation with the timberline/treeline elevation in Mt.Namjagbarwa,which is the most critical factor that affects timberline and treeline elevation,explaining the altitudinal distribution of 44.01%timberline and 46.74%treeline.However,the contributions of the nine factors in core and peripheral areas of timberline and treeline area are evidently different.展开更多
To provide scientific basis for appraising natural resources in Mt. Namjagbarwa area, the migration characteristics of geochemical microelements, such as Zn, V, Ti, Pb, Ni, Cu, Cr, Co, Be and Ba, in the landscape zone...To provide scientific basis for appraising natural resources in Mt. Namjagbarwa area, the migration characteristics of geochemical microelements, such as Zn, V, Ti, Pb, Ni, Cu, Cr, Co, Be and Ba, in the landscape zones of alpine scrub and meadow, the mountainous dark coniferous forest, the mountainous mixed broadleaf and coniferous forest, the mountainous quasi-subtropical semi-evergreen broadleaf forest, the mountainous subtropical evergreen broadleaf forest, and the valley quasi-tropical monsoon rainforest have been described in the paper.展开更多
Ecological dynamics and faunal diversity documentation is normally conducted by direct observation and trapping of live animals. However,surveys of carnivore scat prey and surface bone remains, which are relatively in...Ecological dynamics and faunal diversity documentation is normally conducted by direct observation and trapping of live animals. However,surveys of carnivore scat prey and surface bone remains, which are relatively inexpensive, can provide complementary data that expand carnivore diet breadth and may improve accuracy regarding inferences of the ecological dynamics of a given ecosystem. We used this inexpensive method to document species diversity variation with elevation on the leeward(Sirimon) and windward(Chogoria)areas of Mt. Kenya. Bone and fecal specimens were opportunistically collected by walking 2 km in opposite directions from transect points selected at 200-m intervals along the elevational gradient of the study areas. We collected a total of 220 carnivore fecal and owl pellet specimens from both study sites, which were mainly deposited by the spotted hyena(Crocuta crocuta), leopard(Panthera pardus),serval(Leptailurus serval), genet(Genetta sp.), and Mackinder's Cape owl(Bubo capensis mackinderi).Serval scats were the most common, followed by those of the spotted hyena. Scats and bones were found at the lowest density at the lowest elevations,peaked at mid-higher elevations, and then declined at the highest elevations. Based on skeletal analysis only, there were more species in Sirimon(19) than in Chogoria(12). Small fauna(rodents to duiker size bovids) formed the bulk of the identified remains,representing 87.9% of the Sirimon fauna and 90.9% of the Chogoria fauna. The genus Otomys was the dominant prey of the owl and serval in both sites. Three giraffe teeth were found at 3 500 m a.s.l. in Chogoria on the edge of Lake El is, suggesting that it is an occasional visitor to such high elevations. This study underscores the value of fecal and bone surveys in understanding the diet and diversity of mammals in ecological ecosystems,but such surveys should be complemented with analysis of hairs found in scats to obtain a more complete list of carnivore prey at Mt. Kenya.展开更多
From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mr. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due...From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mr. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.展开更多
High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio ...High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio method(AAR), in conjunction with Landsat, Google Earth, and SRTM imagery, to reconstruct glacier boundaries and equilibrium-line altitudes(ELAs) for Mt. Kenya in the Last Glacial Maximum(LGM), the Little Ice Age(LIA), and at present. Our results show that the areas of Lewis Glacier and the Tyndall-I glacier system were 0.678 km^2 and 0.390 km^2, respectively, during the maximum of LIA. Those mean that the both glaciers have shrunken by 87.0% and 88.7%, respectively since the LIA. Area change ratios for each glacier were significantly larger in the period of 2000 through 2015 than the former periods, indicating that glacier recession has accelerated. Continuous ice loss in this region has been driven by rising temperature and fluctuating precipitation. Linear regression data for Lewis glacier show that mass balance sensitivity to dry season temperature was –315 mm w.e./℃, whereas the sensitivity to dry season precipitation was 5.2 mm w.e./mm. Our data also show that the ELA on the western slope of Mt. Kenya rose by 716-816 m from the LGM to the modern era, corresponding to that temperature rose by 5.2℃-6.5℃.展开更多
Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation...Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation regions over the Himalayas,observational meteorological data are very few on Mt. Everest. In 2005,an automatic weather station was operated at the East Rongbuk glacier Col of Mt. Everest over the Himalayas. The observational data have been compared with the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayan region,after the reanalyzed data were interpolated in the horizontal to the location of Mt. Everest and in the vertical to the height of the observed sites. The reanalysis data can capture much of the synoptic-scale variability in temperature and pressure,although the reanalysis values are systematically lower than the observation. Furthermore,most of the variability magnitude is,to some degree,underestimated. In addition,the variation extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data,which is more important from the standpoint of improving the safety of climbers who attempt to climb Mt. Everest peak.展开更多
基金Science and Technology Research Program of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,No.IMHE-CXTD-02,No.IMHE-ZDRW-06。
文摘Investigating the spatial distribution of vegetation in monsoonal-climate-dominated high mountain area and detecting its changes that occurred in paraglacial areas is crucial for understanding the cascading environmental effects of shrinking glaciers.We used Landsat images from 1994 to 2022,obtained landscape distribution patterns of glaciers and vegetation in Mt.Gongga,and detected paraglacial vegetation changes under deglaciating environments.We observed there is a pronounced difference in glacier and vegetation coverage between the eastern and western slopes in Mt.Gongga,the eastern slope occupies 78.68% of vegetation area and 61.02% of glacier area,whilst the western slope occupies lower area.Exaggerate warming accelerated glacier retreat,and proglacial areas are generally characterized by very fast primary succession,resulting in an increase of 0.32 km^(2)in vegetation area within two typical glacier forefields on the eastern slope.The phenomenon of paraglacial slope failure following glacier thinning is widespread in Mt.Gongga,resulting in vegetation area decreased by 0.34 km^(2).Concurrently,the fast retreat of glaciers and changes in ice surface geomorphology have caused rapid dynamics in supraglacial vegetation developed on its lower debris-covered sections.We suggested that rapid changes of temperate glaciers can significantly influence paraglacial landform,leading to rapid dynamic changes of vegetation in a balance between colonization and destruction.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK0606,2019QZKK0604)the National Natural Science Foundation of China(Grant No.41875183)。
文摘As part of“The Earth Summit Mission-2022”during the second Tibetan Plateau Scientific Expedition and Research(STEP)in April and May 2022,we conducted the ozone sounding experiment(an ozonesonde mated to a radiosonde)at Mt.Qomolangma Base Camp(MQBC;86.85°E,28.14°N;5200 m),a location at an extremely high altitude.A total of ten sounding profiles were obtained between April 30 and May 06,2022,of which seven profiles were above35 km in altitude,with a maximum detection altitude up to 39.0 km.This study presents the temporal variation and vertical distributions of atmospheric temperature,humidity,and ozone during the MQBC campaign.The averaged ozone concentration was high(68.3 ppbv)at the surface and then increased smoothly until peaking(~110 ppbv)in the middle troposphere(approximately 10 km),and afterward,the ozone concentration increased rapidly from the upper troposphere to a maximum of~10 ppmv at~30 km.The enhanced ozone concentration in the middle troposphere was associated with the blocking high pressure,and transport from the southern flank of the Himalayas occurred during the campaign period.The average total ozone column was 291.9±21.4 DU for the seven profiles exceeding 35km in altitude.The ozonesonde measurements were also compared with the vertical ozone profiles retrieved from the space-borne ozone products from the Microwave Limb Sounder(MLS)onboard the Aura satellite and the Atmospheric Infrared Sounder(AIRS)onboard the Aqua satellite.
基金The External Cooperation Program of the Chinese Academy of Sciences,No.GJHZ0954National Basic Research Program of China,No.2005CB422006Institutional Consolidation for the Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex
文摘Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006 we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 + 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91± 0.035 km2 and glacial lakes expanded by 36.88 + 0.035 kin2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700-6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.
基金The Climate Change Programme of The China Meteorological Administration, No.CCSF2005-2-QH38 National Basic Research Program of China, No.2005CB422006 Knowledge Innovation Project of CAS, No.KZCX3-SW-3392
文摘Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filter and accumulated variance analysis methods, the spatial and temporal patterns of the climatic change in this region were analyzed. The main findings can be summarized as follows: (1) There is obvious ascending tendency for the interannual change of air temperature in Mt. Qomolangma region and the ascending tendency of Tingri, the highest station, is the most significant. The rate of increasing air temperature is 0.234℃/decade in Mt. Qomolangma region, 0.302 ℃/decade in Tingxi. The air temperature increases more strongly in non-growing season. (2) Compared with China and the global average, the warming of Mt. Qomolangma region occurred early. The linear rates of temperature increase in Mt. Qomolangma region exceed those for China and the global average in the same period. This is attributed to the sensitivity of mountainous regions to climate change. (3) The southern and northern parts of Mt. Qomolangma region are quite different in precipitation changes. Stations in the northern part show increasing trends but are not statistically significant. Nyalam in the southern part shows a decreasing trend and the sudden decreasing of precipitation occurred in the early 1990s. (4) Compared with the previous studies, we find that the warming of Mt. Qomolangma high-elevation region is most significant in China in the same period. The highest automatic meteorological comprehensive observation station in the world set up at the base camp of Mt. Qomolangma with a height of 5032 m a.s.l will play an important role in monitoring the global climate change.
基金supported by the National Basic Research Program of China (No. 2010CB951003)the Knowledge Innovation Project of the Chinese Academy of Sciences (No. KZCX2-EW-311)the National Natural Science Foundation of China (Nos. 1141001040, J0930003/J0109)
文摘Glacial features in the geological record provide essential clues about past behavior of climate. Of the numerous physical systems on earth, glaciers are one of most responsive to climate change, especially small glaciers, their direct marginal response taking only a few years or decades to be expressed. Accelerating recession of modern glaciers raises the issue of the climate's impact on water runoff. Data based on topographic maps and Advanced Spaceborne Thermal Emission and Radiometer (ASTER) imagery show the trends that are highly variable over time and within the region. An analysis of the local topographic settings of very small (〈0.5 km2) glaciers was conducted to investigate their influence on recent changes in these glaciers. Among 137 glaciers, 12 disappeared completely. The study reveals that glaciers situated in favorable locations had tiny relative area reduction, while those in less favorable settings generally had large area loss or even disappeared. It is suggested that most of the small glaciers studied have retreated as far as they are likely to under the climatic conditions of the late 20th century. Undoubtedly, the strong retreating of small glaciers exerts adverse effects on the hydro- logic cycle and local socioeconomic development.
基金supported by the National Natural Science Foundation of China (Nos.40801028,40971019)the National Basic Research Program of China (No.2007CB411501)+1 种基金the West Light Foundation of Chinese Academy of Sciences (No.O828A11001)the Funds from the State Key Laboratory of Cryospheric Sciences and the Lijiang City Government
文摘Aerosol and snow samples were collected at ablation zone of Baishui (白水) Glacier No. 1, Mt. Yulong (玉龙), from May to June, 2006. The concentrations of Cl^-, NO3^-, SO4^2-, Na^+, K^+, Mg^2+, and Ca^2+ were determined by ion chromatograph both in aerosol and snow samples. The average total aerosol loading is 25.45 neq.scm^-1, NO3^- and Na^+ are the dominant soluble ions in the aerosol, accounting for 39% and 21% of average total aerosol loading, respectively. Monsoon circulation reduces the concentration of most ions, indicating that wet scavenging is effective for aerosol particles. In snow samples, SO4^2- and Ca^2+ are the dominant anion and cation, respectively. A lower Na^+/Cl^- ratio was found in fresh snow samples compared to the higher ratio that was found in aerosol samples. Analyzing the difference in SO4^2- and NO3^- in air and fresh snow indicated that the aerosol was influenced by local circulation, but the components in fresh snow samples were from long-distance transport. Enrichment of NO3^- in aerosol samples is attributed to motor exhaust emissions from tourism by calculating the SO4^2-/NO3^- ratio in aerosol and fresh snow samples. The temporal variation and correlation coefficients between soluble species in aerosol samples suggest that Cl^-, Na^+ and K^+ come from sea-salt aerosol, and SO4^2-, Mg^2+ and Ca^2+ are from continental crust sources.
基金the National Basic Research Program of China, No.2005CB422006Social Commonweal Re-search Project of Ministry of Science and Technology of China, No.2005DIA3J106National Natural Science Foundation of China, No.40331006
文摘Based on the NOAA AVHRR-NDVI data from 1981 to 2001, the digitalized China Vegetation Map (1:1,000,000), DEM, temperature and precipitation data, and field investigation, the spatial patterns and vertical characteristics of natural vegetation changes and their influencing factors in the Mt. Qomolangma Nature Reserve have been studied. The results show that: (1) There is remarkable spatial difference of natural vegetation changes in the Mt. Qomolangma Nature Reserve and stability is the most common status. There are 5.04% of the whole area being seriously degraded, 13.19% slightly degraded, 26.39% slightly improved, 0.97% significantly improved and 54.41% keeping stable. The seriously and slightly degraded areas, which mostly lie in the south of the reserve, are along the national boundaries. The areas of improved vegetation lie in the north of the reserve and the south side of the Yarlung Zangbo River. The stable areas lie between the improved and degraded areas. Degradation decreases with elevation. (2) Degeneration in the Mt. Qomolangma Nature Reserve mostly affects shrubs, needle-leaved forests and mixed forests. (3) The temperature change affects the natural vegetation changes spatially while the integration of temperature changes, slopes and aspects affects the natural vegetation change along the altitude gradients. (4) It is the overuse of resources that leads to the vegetation degeneration in some parts of the Mt. Qomolangma Nature Reserve.
基金supported by the Sino-Africa Joint Research Centre,Chinese Academy of Sciences(SAJC201612)
文摘The distribution of small mammals in mountainous environments across different elevations can provide important information on the effects of climate change on the dispersal of species. However, few studies conducted on Afromontane ecosystems have compared the altitudinal patterns of small mammal diversity. We investigated the species diversity and abundance of non-volant small mammals(hereafter ‘small mammals')on Mt. Kenya, the second tallest mountain in Africa,using a standard sampling scheme. Nine sampling transects were established at intervals of 200 m on the eastern(Chogoria) and western(Sirimon) slopes.A total of 1 905 individuals representing 25 species of small mammals were trapped after 12 240 trap-nights.Abundance was highest at mid-elevations on both slopes.However, species richness and their distribution patterns differed between the two slopes. More species were recorded on Chogoria(24) than on Sirimon(17). On Chogoria, species richness was higher at mid-high elevations, with a peak at mid-elevation(2 800 m a.s.l.),whereas species richness showed little variation on the Sirimon slope. These results indicate that patterns of species diversity can differ between slopes on the same mountain. In addition, we extensively reviewed literature on Mt. Kenya's mammals and compiled a comprehensive checklist of 76 mammalian species. However, additional research is required to improve our understanding of smal mammal diversity in mountain habitats in Africa.
基金supported by the National Natural Science Foundation of China (No. 40605034, 40771087, 40830743)the National Basic Research Program (973) of China (No. 2005CB422004)the State Key Labo- ratory of Cryospheric Sciences (No. SKLCS-ZZ-2008-1)
文摘To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy dispersive X-ray (EDX) signal, totally 1500 particles were classed into 7 groups: soot; aluminosilicates; fly ash; calcium sulfates; Ca/Mg carbonates; metal oxides; and biological particles and carbon fragments. The size distribution and number fractions of different particle groups exhibited distinct seasonal variations between non-monsoon and monsoon periods, which are clearly related to the differences in air mass pathways. Specifically, the relative abundance of soot in non-monsoon period (25%) was much higher than that in monsoon period (14%), indicating Mt. Qomolangma region received more anthropogenic influence in non-monsoon than monsoon period.
基金Major Directionality Program of the Chinese Academy of Sciences (KZCXZ-YW-317)Key Project of the National Natural Science Foundation of China (No. 90511007)+2 种基金National Basic Research Program of China (No. 2007CB411201)Innovative Research International Partnership Project of the Chinese Academy of Sciences (CXTD-Z2005-2)Project for Outstanding Young Scientists of the National Natural Science Foundation of China (No. 40121101).
文摘Great change, associated with global warming, has occurred at the Hailuogou (海螺沟) glacier, Mt. Gongga (贡嘎), China, since the early 20th century. Various data indicate that the glacier has retreated 1 822 m in the past 106 years, with an annual mean retreat of 17.2 m, and the front elevation has risen by 300 m since 1823. Comparison of glacier variations and temperature fluctuations in China and the Northern Hemisphere, over the last 100 years, indicates that glacier retreat stages occurred during the warm phase, and vice versa. Mass balance records during 1959/60-2003/04 have shown that the glacier has suffered a constant mass loss of snow and ice. The accumulated mass balance, -10.83 m water equivalent, indicates an annual mean value of -0.24 m water equivalent. The correlation between the mass balance and temperature is significant, which also indicates that climate warming is the crucial cause of glacier loss. Local hydrological and climatic data demonstrate that runoff from the glacier has been increasing both seasonally and annually. The correlation analysis and trend analysis indicate that ice and snow melted water is the main cause of an increase in the runoff. As the climate has become warmer, changes in the glacier surface morphology have obviously occurred. These include a decrease in glacier thickness, enlargement of glacial caves, and reduction of the size of clefts on the glacier surface. The ablation period has lengthened and the ablation area has expanded. A variety of factors thus provide evidence that the Hailuogou glacier has suffered a rapid loss of snow and ice as a result of climatic warming.
基金National Basic Research Program of China,No.2010CB951704 Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB03030500 National Natural Science Foundation of China,No.40901057
文摘Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.
基金National Natural Science Foundation of China, No.40501014 No.40871058
文摘The concentrations of heavy metals Ba, Pb, Cu, Zn and Co in snow pit collected in September, 2005 from the accumulation area of the East Rongbuk Glacier (6523 m a.s.l.), which lies on the northern slope of Mt. Qomolangma, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations (pg/ml) of heavy metals are Ba2-227, Co2.8-15.7, Cu10-120, Zn29-4948 and Pb14-142, respectively. The 5180 was determined by MAT-252. The time period of the snow pit spans from autumn 2005 to summer 2004. Seasonal variations of the concentrations and δ^18O are observed, of which Pb, Cu, Zn and Co are much lower in summer monsoon season than that in non summer monsoon season, suggesting that different sources of heavy metals contributed to the site. EFc (crustal enrichment factors) is Co3.6, Cu27, Pb33 and Zn180, respectively. Higher EFo values of Pb, Cu and Zn suggest that Pb, Cu especially Zn are mainly contributed by anthropogenic sources.
基金partially funded by the National Nature Science Foundation of China(Grant No.40501015)the Chinese Academy of Science(Grant No.KZCX3-SW-354 and KZCX3-SW-344).
文摘Mt. Qomolangma (Everest), the highest mountain peak in the world, has little been studied extensively from a meteorological perspective, mostly because of the remoteness of the region and the resultant lack of meteorological data. An automatic weather station (AWS), the highest in the world, was set up on 27 April 2005 at the Ruopula Pass (6523 m asl) on the northern slope of Mt. Qomolangma by the team of integrated scientific expedition to Mt. Qomolangma. Here its meteorological characteristics were analyzed according to the lo-minute-averaged and 24-hour records of air temperature, relative humidity, air pressure and wind from 1 May to 22 July 2005. It is shown that at 6523 m of Mt. Qomolangma, these meteorological elements display very obvious diurnal variations, and the character of averaged diurnal variation is one-peak-and-one-vale for air temperature, one-vale for relative humidity, two-peak-and-two-vale for air pressure, and one-peak with day-night asymmetry for wind speed. In the 83 days, all the air temperature, relative humidity and air pressure increased with some different fluctuations, while wind speed decreased gradually and wind direction turned from north to south. The variations of relative humidity had great fluctuations and obvious local differences. Then the paper discusses the reason for the characters of diurnal and daily variations. Compared with the corresponding records in May 1960, 5-day-averaged maximums, minimums and diurnal variations of air temperature in May 2005 were apparently lower.
基金supported by the National Natural Science Foundation of China Granted to Yongjie Wu(No.31501851,31772478)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists to Per Alstrom(No.2011T2S04)
文摘Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another,or among lineages.In this study,we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt.Gongga,the highest peak in the Hengduan Mountain Range in central China,and a mountain where comprehensive studies of avian diversity are still lacking.Methods:We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l.between 2012 and 2017.To test the relationship between bird species richness and environmental factors,we examined the relative importance of seven ecological variables on breeding season distribution patterns:land area(LA),mean daily temperature(MDT),seasonal temperature range(STR),the mid-domain effect(MDE),seasonal precipitation(SP),invertebrate biomass(IB) and enhanced vegetation index(EVI).Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.Results:A total of 219 bird species were recorded in the field,of which 204 were recorded during the breeding season(April–August).Species richness curves(calculated separately for total species,large-ranged species,and smallranged species) were all hump-shaped.Large-ranged species contributed more to the total species richness pattern than small-ranged species.EVI and IB were positively correlated with total species richness and small-ranged species richness.LA and MDT were positively correlated with small-ranged species richness,while STR and SP were negatively correlated with small-ranged species richness.MDE was positively correlated with large-ranged species richness.When we considered the combination of candidate factors using multiple regression models and model-averaging,total species richness and large-ranged species richness were correlated with STR(negative) and MDE(positive),while small-ranged species richness was correlated with STR(negative) and IB(positive).Conclusions:Although no single key factor or suite of factors could explain patterns of diversity,we found that MDE,IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories.Model-averaging indicates that small-ranged species appear to be mostly influenced by IB,as opposed to large-ranged species,which exhibit patterns more consistent with the MDE model.Our data also indicate that the species richness varied between seasons,offering a promising direction for future work.
基金supported by the National Natural Science Foundation of China(Grant No.41401111)the Natural Science Foundation of Shandong Province(Grant No.ZR2021MD080 and Grant No.ZR2014DQ017)the Shandong Agricultural Science and Technology Fund Project(Grant No.2019LY006)。
文摘Different types of vegetation patches are alternately and randomly distributed in a timberline ecotone where the upper limit is the treeline and the lower limit is the timberline.However,most studies on timberline/treeline altitudinal distributions have simplified timberline or treeline as continuous curves and disregarded the fuzziness of timberline/treeline and the randomness of different vegetation patch distributions in a timberline ecotone.To study the altitudinal distribution characteristics of timberline and treeline from the perspective of uncertainty theory,we constructed the timberline and treeline elevation cloud models in Mt.Namjagbarwa in east Himalayas.Subsequently,we established multiple linear regression models by using nine influencing factors,namely,aspect,slope,topographic relief,dryness index,average temperature in January and July,latitude,summit syndrome(represented by the vertical distance from the peak),and snow effect(represented by the nearest distance from the snow)as independent variables,and the elevations of timberline/treeline as dependent variables.Then we compared the contributions of the nine factors in timberline,treeline,and the core and peripheral areas of timberline and treeline.The results show that 1)the timberline/treeline elevation cloud model can represent the overall characteristics(especially the uncertainty)of the altitudinal distributions of the timberline/treeline well.The uncertainty of treeline’s altitudinal distribution is higher than that of timberline(entropy and hyper entropy:207.59 m and 70.36 m for treeline elevation cloud;entropy and hyper entropy:191.17 m and 50.13 m for timberline elevation cloud).2)The influence of climate and topography on timberline and treeline are similar.The average temperature in July has a significant negative correlation with the timberline/treeline elevation in Mt.Namjagbarwa,which is the most critical factor that affects timberline and treeline elevation,explaining the altitudinal distribution of 44.01%timberline and 46.74%treeline.However,the contributions of the nine factors in core and peripheral areas of timberline and treeline area are evidently different.
文摘To provide scientific basis for appraising natural resources in Mt. Namjagbarwa area, the migration characteristics of geochemical microelements, such as Zn, V, Ti, Pb, Ni, Cu, Cr, Co, Be and Ba, in the landscape zones of alpine scrub and meadow, the mountainous dark coniferous forest, the mountainous mixed broadleaf and coniferous forest, the mountainous quasi-subtropical semi-evergreen broadleaf forest, the mountainous subtropical evergreen broadleaf forest, and the valley quasi-tropical monsoon rainforest have been described in the paper.
基金supported by the Sino-Africa Joint Research Centre,Chinese Academy of Sciences(SAJC201612)
文摘Ecological dynamics and faunal diversity documentation is normally conducted by direct observation and trapping of live animals. However,surveys of carnivore scat prey and surface bone remains, which are relatively inexpensive, can provide complementary data that expand carnivore diet breadth and may improve accuracy regarding inferences of the ecological dynamics of a given ecosystem. We used this inexpensive method to document species diversity variation with elevation on the leeward(Sirimon) and windward(Chogoria)areas of Mt. Kenya. Bone and fecal specimens were opportunistically collected by walking 2 km in opposite directions from transect points selected at 200-m intervals along the elevational gradient of the study areas. We collected a total of 220 carnivore fecal and owl pellet specimens from both study sites, which were mainly deposited by the spotted hyena(Crocuta crocuta), leopard(Panthera pardus),serval(Leptailurus serval), genet(Genetta sp.), and Mackinder's Cape owl(Bubo capensis mackinderi).Serval scats were the most common, followed by those of the spotted hyena. Scats and bones were found at the lowest density at the lowest elevations,peaked at mid-higher elevations, and then declined at the highest elevations. Based on skeletal analysis only, there were more species in Sirimon(19) than in Chogoria(12). Small fauna(rodents to duiker size bovids) formed the bulk of the identified remains,representing 87.9% of the Sirimon fauna and 90.9% of the Chogoria fauna. The genus Otomys was the dominant prey of the owl and serval in both sites. Three giraffe teeth were found at 3 500 m a.s.l. in Chogoria on the edge of Lake El is, suggesting that it is an occasional visitor to such high elevations. This study underscores the value of fecal and bone surveys in understanding the diet and diversity of mammals in ecological ecosystems,but such surveys should be complemented with analysis of hairs found in scats to obtain a more complete list of carnivore prey at Mt. Kenya.
基金supported by National Key Project for Basic Research of China (No. 2007CB411503)Chinese COPES project (GYHY200706005)the National Basic Work Program of Chinese MST (Glacier Inventory of China II, Grant No.2006FY110200)
文摘From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mr. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070302)the National Natural Science Foundation of China(Grant Nos.41501069,41601067)provided by the Foundation of the State Key Laboratory of Cryospheric Sciences(SKLCS)at Northwest Institute of Eco-Environment and Resources(NIEER),CAS(SKLCS-OP-2017-10)
文摘High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio method(AAR), in conjunction with Landsat, Google Earth, and SRTM imagery, to reconstruct glacier boundaries and equilibrium-line altitudes(ELAs) for Mt. Kenya in the Last Glacial Maximum(LGM), the Little Ice Age(LIA), and at present. Our results show that the areas of Lewis Glacier and the Tyndall-I glacier system were 0.678 km^2 and 0.390 km^2, respectively, during the maximum of LIA. Those mean that the both glaciers have shrunken by 87.0% and 88.7%, respectively since the LIA. Area change ratios for each glacier were significantly larger in the period of 2000 through 2015 than the former periods, indicating that glacier recession has accelerated. Continuous ice loss in this region has been driven by rising temperature and fluctuating precipitation. Linear regression data for Lewis glacier show that mass balance sensitivity to dry season temperature was –315 mm w.e./℃, whereas the sensitivity to dry season precipitation was 5.2 mm w.e./mm. Our data also show that the ELA on the western slope of Mt. Kenya rose by 716-816 m from the LGM to the modern era, corresponding to that temperature rose by 5.2℃-6.5℃.
基金the Strategic Study Foundation of Chinese Polar Science (Grant No. 2007228) the National Nature Science Foundation of China (Grant No. 40501015) the Chinese Academy of Science (Grant No. KZCX3-SW-354 and KZCX3-SW-344).
文摘Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation regions over the Himalayas,observational meteorological data are very few on Mt. Everest. In 2005,an automatic weather station was operated at the East Rongbuk glacier Col of Mt. Everest over the Himalayas. The observational data have been compared with the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayan region,after the reanalyzed data were interpolated in the horizontal to the location of Mt. Everest and in the vertical to the height of the observed sites. The reanalysis data can capture much of the synoptic-scale variability in temperature and pressure,although the reanalysis values are systematically lower than the observation. Furthermore,most of the variability magnitude is,to some degree,underestimated. In addition,the variation extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data,which is more important from the standpoint of improving the safety of climbers who attempt to climb Mt. Everest peak.