期刊文献+
共找到63,681篇文章
< 1 2 250 >
每页显示 20 50 100
The Looming Threat Blackout of the National Grid and Critical Infrastructure (A National Security Crisis) 被引量:1
1
作者 Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第1期31-35,共5页
The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by phy... The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy. 展开更多
关键词 National grid blackout critical infrastructure security EMP cyberattack resilience AI-powered grid protection ML in energy security power grid vulnerabilities physical attacks on infrastructure predictive maintenance for power grids energy crisis and national security
在线阅读 下载PDF
Market Drivers in India’s Smart Grid:Responsibilities and Roles of Stakeholders
2
作者 Abhay Sanatan Satapathy Suresh Kumar Sahoo +3 位作者 Asit Mohanty Yasser Fouad Manzoore Elahi Mohammad Soudagar Erdem Cuce 《Energy Engineering》 EI 2025年第1期101-128,共28页
The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespre... The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future. 展开更多
关键词 Smart grid STAKEHOLDERS smart grid technology market drivers
在线阅读 下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
3
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
在线阅读 下载PDF
AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation
4
作者 Congcong Wang Chen Wang +1 位作者 Wenying Zheng Wei Gu 《Computers, Materials & Continua》 SCIE EI 2025年第1期799-816,共18页
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use... As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis. 展开更多
关键词 Smart grid data security privacy protection artificial intelligence data aggregation
在线阅读 下载PDF
Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation
5
作者 Adel Binbusayyis Mohemmed Sha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期909-931,共23页
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ... Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system. 展开更多
关键词 Smart grid machine learning particle swarm optimization XGBoost dynamic inertia weight update
在线阅读 下载PDF
Integrated Equipment with Functions of Current Flow Control and Fault Isolation for Multiterminal DC Grids
6
作者 Shuo Zhang Guibin Zou 《Energy Engineering》 EI 2025年第1期85-99,共15页
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ... The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract. 展开更多
关键词 Integrated equipment multiterminal direct current grid current flow control fault isolation
在线阅读 下载PDF
A Review of Research Activities for the Perspective of a Smart Electricity Grid in Burkina Faso
7
作者 Brice Junior Carmel Wendenda Ilboudo Ollé Michel Kam Raguilignaba Sam 《Smart Grid and Renewable Energy》 2025年第1期1-12,共12页
This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in t... This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in the world with significant energy challenges. It examines the current state of energy infrastructure in Burkina Faso, focusing on the integration of renewable energy sources, particularly solar photovoltaics. It highlights the role of smart grid technologies in enabling the efficient integration of renewable energy, improving grid stability and facilitating rural electrification. Additionally, the review addresses key challenges such as inadequate infrastructure, regulatory gaps and financial constraints that hinder the deployment of smart grids in the country. By analysing existing research and ongoing projects, this paper provides a comprehensive overview of the opportunities and barriers to implementing a smart electricity grid in Burkina Faso and offers recommendations for future development and policy frameworks. 展开更多
关键词 Smart grid Smart Building Decentralised Energy Production PHOTOVOLTAIC Renewable Energy
在线阅读 下载PDF
Optimization Configuration Method for Grid-Side Grid-Forming Energy Storage System Based on Genetic Algorithm
8
作者 Yuqian Qi Yanbo Che +2 位作者 Liangliang Liu Jiayu Ni Shangyuan Zhang 《Energy Engineering》 2025年第10期3999-4017,共19页
The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-... The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance. 展开更多
关键词 Energy storage system(ESS) genetic algorithm(GA) grid optimization smart grid renewable energy integration multi-objective optimization
在线阅读 下载PDF
Real-Time Fault Detection and Isolation in Power Systems for Improved Digital Grid Stability Using an Intelligent Neuro-Fuzzy Logic
9
作者 Zuhaib Nishtar Fangzong Wang +1 位作者 Fawwad Hassan Jaskani Hussain Afzaal 《Computer Modeling in Engineering & Sciences》 2025年第6期2919-2956,共38页
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru... This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies. 展开更多
关键词 Fault detection and isolation(FDI) neuro-fuzzy systems digital grids smart grid resilience power system artificial intelligence(AI)
在线阅读 下载PDF
Powering Artificial Intelligence:How Artificial Intelligence’s Massive Energy Demands Are Reshaping the Future of Smart Grid
10
作者 Bahman Zohuri Farhang Mossavar-Rahmani Mehdi Abedi-Varaki 《Journal of Energy and Power Engineering》 2025年第3期91-99,共9页
The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model tr... The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model training and widespread real-time inference necessitates substantial electricity consumption,presenting a significant challenge to conventional power infrastructure.This paper examines the critical need for a fundamental shift towards smart energy grids in response to AI’s growing energy footprint.It delves into the symbiotic relationship wherein AI acts as a significant energy consumer while offering the intelligence required for dynamic load management,efficient integration of renewable energy sources,and optimized grid operations.We posit that advanced smart grids are indispensable for facilitating AI’s sustainable growth,underscoring this synergy as a pivotal advancement toward a resilient energy future. 展开更多
关键词 AI smart grid energy demand data centers load balancing renewable integration grid modernization deep learning power consumption real-time monitoring AI in energy systems
在线阅读 下载PDF
Influence of grid on the extraction characteristics of different charged ions in mixed ion beams
11
作者 Ao Xu Xiang Wan Pingping Gan 《Chinese Physics B》 2025年第8期637-644,共8页
The extraction characteristics of multi-charged ions produced by ion sources are important for some useful applications.In this paper,the extraction process of Cu^(+),Cu^(2+),Cu^(3+),and Cu^(4+)mixed ions is simulated... The extraction characteristics of multi-charged ions produced by ion sources are important for some useful applications.In this paper,the extraction process of Cu^(+),Cu^(2+),Cu^(3+),and Cu^(4+)mixed ions is simulated by setting ideal physical parameters in a two-dimensional particle-in-cell(PIC)code,and the evolution characteristics of density and velocity distributions of different charged ions during plasma(density about 10^(15)m^(-3))motion and extraction are presented.Besides,the effects of grid thickness and grid aperture on the motion behavior of different charged ions and the extracted ion current are analyzed.The results showed that the ion diffusion increases with the increase of the ion charge,and higher charged ions are more likely to be affected by the grid.This provides support for further understanding of the extraction characteristics of multi-charged mixed ion beams. 展开更多
关键词 ion extraction grid multi-charged ion density distribution
原文传递
Smart Grid Security Framework for Data Transmissions with Adaptive Practices Using Machine Learning Algorithm
12
作者 Shitharth Selvarajan Hariprasath Manoharan +2 位作者 Taher Al-Shehari Hussain Alsalman Taha Alfakih 《Computers, Materials & Continua》 2025年第3期4339-4369,共31页
This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects su... This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and losses.In addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks.Moreover,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced complexities.The suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate measurements.This results in the provision of only the original data values,hence enhancing security.Both power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case studies.The proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%. 展开更多
关键词 Machine learning power systems SECURITY smart grid
在线阅读 下载PDF
Security-Constrained Optimal Power Flow in Renewable Energy-Based Microgrids Using Line Outage Distribution Factor for Contingency Management
13
作者 Luki Septya Mahendra Rezi Delfianti +4 位作者 Karimatun Nisa Sutedjo Bima Mustaqim Catur Harsito Rafiel Carino Syahroni 《Energy Engineering》 2025年第7期2695-2717,共23页
Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constr... Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constrained Optimal Power Flow(SCOPF)using the Line Outage Distribution Factor(LODF)to enhance resilience in a renewable energy-integrated microgrid.The research examines a 30-bus system with 14 generators and an 8669 MW load demand,optimizing both single-objective and multi-objective scenarios.The single-objective opti-mization achieves a total generation cost of$47,738,while the multi-objective approach reduces costs to$47,614 and minimizes battery power output to 165.02 kW.Under contingency conditions,failures in transmission lines 1,22,and 35 lead to complete power loss in those lines,requiring a redistribution strategy.Implementing SCOPF mitigates these disruptions by adjusting power flows,ensuring no line exceeds its capacity.Specifically,in contingency 1,power in channel 4 is reduced from 59 to 32 kW,while overall load shedding is minimized to 0.278 MW.These results demonstrate the effectiveness of SCOPF in maintaining stability and reducing economic losses.Unlike prior studies,this work integrates LODF into SCOPF for large-scale microgrid applications,offering a computationally efficient contingency management framework that enhances grid resilience and supports renewable energy adoption. 展开更多
关键词 CONTINGENCY LODF optimal power flow smart grid solar power
在线阅读 下载PDF
A Novel Property of Generalized Fibonacci Sequence in Grids
14
作者 YANG Zi-xian BAI Jian-chao 《Chinese Quarterly Journal of Mathematics》 2025年第1期103-110,共8页
Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for conse... Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for consecutive sums of equidistant sub-sequences,we investigate the ratio of the sum of numbers along main-diagonal and sub-diagonal of odd-order grids containing generalized Fibonacci sequences.We show that this ratio is solely dependent on the order of the grid,providing a concise and splendid identity. 展开更多
关键词 Generalized Fibonacci sequence Fibonacci identity Odd-order grid Geometric property
在线阅读 下载PDF
Future Ultrafast Charging Stations for Electric Vehicles in China:Charging Patterns,Grid Impacts and Solutions,and Upgrade Costs
15
作者 Yang Zhao Xinyu Chen +2 位作者 Peng Liu Chris P.Nielsen Michael B.McElroy 《Engineering》 2025年第5期309-322,共14页
In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including i... In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastruc-ture.Here,we introduce an integrated model to assess fast and ultrafast charging impacts for represen-tative charging stations in China,combining real-world charging patterns and detailed station optimization models.We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30%when fast-charging power is doubled,primarily because shorter charg-ing sessions are less likely to overlap.For more typical stations(e.g.,8-9 chargers and 120 kW·charger^(−1)),upgrading chargers to 350-550 kW while allowing managed dynamic waiting strategies(of∼1 minute)can reduce overall charging times to∼9 minutes.At stations,deploying battery storage and/or expanding transformers can help manage future increases in station loads,yet the primary device cost of the former is∼4 times higher than that of the latter.Our results offer insights for charging infrastructure planning,EV-grid interactions,and associated policymaking. 展开更多
关键词 Electric vehicle Ultrafast charging grid impact Charging infrastructure Upgrade cost
在线阅读 下载PDF
Review:Challenges and Barriers Regarding Electric Vehicles in Modern India with Grid Optimization
16
作者 Venkatraman Ethirajan S.P.Mangaiyarkarasi 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期25-48,共24页
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e... The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles. 展开更多
关键词 electric vehicles vehicle to grid hybrid vehicles renewable energy
在线阅读 下载PDF
Investigation into the performance effect on carbon-carbon composite grid of 10 cm ion thruster with different configurations
17
作者 Bin GAO Juan LI +5 位作者 Juanjuan CHEN Dongbing LIU Zengjie GU Hai GENG Dongsheng WANG Nengwen YAN 《Plasma Science and Technology》 2025年第6期15-24,共10页
To address the future application requirements of carbon-based material grids for ion thrusters characterized by high thrust,elevated specific impulse,and extended operational life,research was conducted using the LIP... To address the future application requirements of carbon-based material grids for ion thrusters characterized by high thrust,elevated specific impulse,and extended operational life,research was conducted using the LIPS-100 ion thruster developed by the Lanzhou Institute of Physics.This study focused on small-diameter configurations of carbon-carbon composite material grids.Successful development was achieved for both a 10 cm split carbon-carbon planar grid and an integrated carbon-carbon convex grid component.Performance variations among different configurations were investigated through extensive performance tests across the wide-range from 1 to 25 mN,as well as 200 h lifespan assessments under typical conditions at 20 mN.The results indicate that the two configurations of the carbon-carbon grid can achieve stable operation across the broad range of 1-20 mN,with beam current fluctuations ranging from 368 to 379 mA and accel grid current fluctuations between 1.58 and 1.81 mA.Furthermore,the key performance parameters of these grids were comparable to those of the traditional molybdenum grids.Under conditions of high thrust and power,the carbon-carbon grid demonstrated a significant reduction in the intercepted current at the accel grid.In comparison to the split carbon-carbon planar grid,the weight of the integrated carbon-carbon convex composite grid was reduced by 17.5%,the anode voltage decreased by approximately 2.4%-8.6%,and the cathode keeper voltage was reduced by approximately 3.5%-12.4%.It can be concluded that the integrated carbon-carbon convex grid offers distinct advantages in terms of hot-state structural stability,suppression of grid etching rates,and enhancement of thruster discharge efficiency. 展开更多
关键词 ion thruster grid component carbon-carbon composite material vacuum experiment
在线阅读 下载PDF
Expeditionplus:The application of a gridded system in the integration of multidimensional environmental factors
18
作者 Xinyuan Kuai Quansheng Fu +1 位作者 Hang Sun Tao Deng 《Plant Diversity》 2025年第4期702-708,共7页
The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distributio... The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distribution patterns and dynamics for botanists,ecologists,conservation biologists,and biogeographers.This study proposes a gridded vector data integration method,combining grid-based techniques with vectorization to integrate diverse data types from multiple sources into grids of the same scale.Here we demonstrate the methodology by creating a comprehensive 1°×1°database of western China that includes plant distribution information and environmental factor data.This approach addresses the need for a standardized data system to facilitate exploration of plant distribution patterns and dynamic changes in the region. 展开更多
关键词 gridded system Data integration Multidimensional environmental factors Western China GIS Plant distribution
在线阅读 下载PDF
Demand side management with wireless channel impact in IoT-enabled smart grid system
19
作者 Md.Farhad Hossain Kumudu S.Munasinghe +4 位作者 Nishant Jagannath Khandakar Tanvir Ahmed Md.Nabid Hasan Ibrahim Elgendi Abbas Jamalipour 《Digital Communications and Networks》 2025年第2期493-504,共12页
Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity... Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare. 展开更多
关键词 Smart grid Real time pricing Demand side management Wireless communications ZIGBEE
在线阅读 下载PDF
PLL Frequency Stability Enhancement under Weak Grid Considering Reactive Current Support
20
作者 Bin Hu Ling Zhan +1 位作者 Heng Nian Donglian Qi 《CES Transactions on Electrical Machines and Systems》 2025年第1期110-114,共5页
The phase-locked loop(PLL)plays an essential role for synchronizing renewable power generation to the grid.However,as per the grid-code compliance for reactive current support,the PLL output frequency fluctuates signi... The phase-locked loop(PLL)plays an essential role for synchronizing renewable power generation to the grid.However,as per the grid-code compliance for reactive current support,the PLL output frequency fluctuates significantly and exceeds the limitation,which seriously threaten the safe supply of electricity.In this paper,the underlying theoretical mechanism and dominant force behind the maximum PLL frequency deviation are revealed.Accordingly,two feasible approaches are proposed to enhance the PLL frequency stability with validations in experimental results. 展开更多
关键词 Phase-locked loop Renewable power generation Weak grid Reactive current support
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部