Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common c...Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration.展开更多
An improved meshfree moving-Kriging(MK)formulation for free vibration analysis of functionally graded material-functionally graded carbon nanotube-reinforced composite(FGM-FGCNTRC)sandwich shells is first proposed in ...An improved meshfree moving-Kriging(MK)formulation for free vibration analysis of functionally graded material-functionally graded carbon nanotube-reinforced composite(FGM-FGCNTRC)sandwich shells is first proposed in this article.The proposed sandwich structure consists of skins of FGM layers and an FGCNTRC core.This structure possesses all the advantages of FGM and FGCNTRC,including high electrical or thermal insulating properties,high fatigue resistance,good corrosion resistance,high stiffness,low density,high strength,and high aspect ratios.Such sandwich structures can be used to replace conventional FGM structures.The present formulation has been established by using an improved meshfree MK method and the first-order shear deformation shell theory(FSDT).The effective material characteristics of the FGM-skin layers and the FGCNTRC core were calculated using the rule of mixture.Key parameters and factors such as the thickness-to-radius ratio,the length-to-radius ratio,layer-thickness ratios,CNT distributions,the volume fraction of CNTs,the power-law index,and various boundary conditions were rigorously investigated.A nonlinear CNT distribution that we term FG-nX is first proposed in this work,and many new results of FGM-FGCNTRC sandwich shells have been provided.展开更多
In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow fo...In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow for more accurate prediction of the ice performance of a designed ship and provide inputs for designers of ship power and automation systems. Preliminary calculations of ship propulsion and thrust characteristics in ice can enable predictions of full-scale ice resistance without measuring the propeller thrust during sea trials. Measuring propeller revolutions,ship speed, and the power delivered to propellers could be sufficient to determine the propeller thrust of the vessel. At present, significant difficulties arise in determining the thrust of icebreakers and ice-class ships in ice conditions. These challenges are related to the fact that the traditional system of propeller/hull interaction coefficients does not function correctly in ice conditions. The wake fraction becomes negative and tends to minus infinity starting from a certain value of the propeller advance coefficient. This issue prevents accurate determination of the performance characteristics, thrust, and rotational speed of the propulsors. In this study, an alternative system of propeller/hull interaction coefficients for ice is proposed. It enables the calculation of all propulsion parameters in ice based on standard hydrodynamic tests with selfpropulsion models. An experimental method is developed to determine alternative propeller/hull interaction coefficients. A prediction method is suggested to determine propulsion performance in ice based on the alternative interaction coefficient system. A case study applying the propulsion prediction method for ice conditions is provided. This study also discusses the following issues of ship operation in ice: the scale effect of icebreaker propellers and the prospects for introducing an ice interaction coefficient.展开更多
From a very early period,the Chinese already vaguely sensed that the cultivation of crops required an intricate system.The third century BCE work Master Lü’s Spring and Autumn Annals(Lüshi chunqiu吕氏春秋)s...From a very early period,the Chinese already vaguely sensed that the cultivation of crops required an intricate system.The third century BCE work Master Lü’s Spring and Autumn Annals(Lüshi chunqiu吕氏春秋)states that crops were fed by heaven and raised by earth,and that harvests depended on the farmers who worked the land.Therefore,these three elements,that is,heaven,earth,and farmers,together with crops,jointly constituted a complex community.According to the ancient Chinese,moving a crop away from its native place could bring huge benefits to the new area to which the crop was moved.When writing and compiling Fundamentals of Agriculture and Sericulture(Nongsang jiyao农桑辑要),the officials of the Agricultural Extension Bureau司农司in the Yuan dynasty(1271–1368)excitedly noted the changes brought about by non-native crops to the agriculture of the Central Plains of China中原:“Ramie(Boehmeria nivea)is a crop native to southern China,while cotton(Gossypium herbaceum)comes from the Western Regions西域.In recent years,nevertheless,ramie has been introduced to Henan,while cotton has started to be planted in Shaanxi.The two crops thrive and show no difference from local crops.Farmers in the two regions benefit a lot therefrom”(Agricultural Extension Bureau 1888,juan 2:21).展开更多
Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potenti...Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potential to fulfill hybrid control demands without incurring a drag penalty.Dynamic equations for a flexible wing equipped with a spanwise moving mass under unsteady aerodynamic loading are derived using mass position as the input variable.Controloriented analyses indicate that intrinsic structural frequencies,flutter characteristics,and gust response can be actively modified by varying the spanwise and chordwise positions of the mass element.Among these,the chordwise position exerts a more significant impact on the structural modes and flutter speed of the wing.A hybrid aeroelastic control system,incorporating motion planning and control law,is proposed to evaluate real-time performance in Active Flutter Suppression(AFS)and Gust Load Alleviation(GLA).Control outcomes suggest that,with a mass ratio of 1/16 and a half-chord installation area for the guide rail,flutter speed increases by about 10%.Additionally,excitation amplitudes across different gust frequencies are substantially mitigated,achieving a maximum reduction of vibration amplitude by about 73%.These findings offer a comprehensive understanding of the MMC technique and its application to flexible aircraft.展开更多
This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th...This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,...Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness.展开更多
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar...The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.展开更多
Intracortical neural interfaces directly connect brain neurons with external devices to achieve high temporal resolution and spatially precise sampling of neural activity.When applied to freely moving animals,this tec...Intracortical neural interfaces directly connect brain neurons with external devices to achieve high temporal resolution and spatially precise sampling of neural activity.When applied to freely moving animals,this technology provides in-depth insight into the underlying neural mechanisms for their movement and cognition in real-world scenarios.However,the application of implanted devices in freely moving animals is limited by restrictions on their behavioral freedom and physiologic impact.In this paper,four technological directions for ideal implantable neural interface devices are analyzed:higher spatial density,improved biocompatibility,enhanced multimodal detection of electrical/neurotransmitter signals,and more effective neural modulation.Finally,we discuss how these technological developments have been applied to freely moving animals to provide better insight into neuroscience and clinical medicine.展开更多
The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-...The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.展开更多
The emerging millimeter-wave microphones have garnered considerable attention in recent years due to their potential for sound detection in various applications,particularly in situations where traditional microphones...The emerging millimeter-wave microphones have garnered considerable attention in recent years due to their potential for sound detection in various applications,particularly in situations where traditional microphones may be impractical.However,despite their promise,there is a notable lack of evidence demonstrating high-quality sound recovery of moving sources,which remains a significant challenge in thefield.This paper addresses this critical gap by proposing a novel method for displacement alignment that improves the detection and recovery of sound signals from moving sources.The proposed method works byfirst aligning the displacement of the sound source over time,which ensures that the signals are synchronized and avoids interference from movement of sources.Subsequently,precise surface vibrations are extracted from the aligned signals,providing data for sound recovery.Afinite impulse response(FIR)filter is applied to remove low-frequency motion,which often interferes with the clarity of the detected sound.Experimental results demonstrate the method’s effectiveness in recovering high-quality sound from moving sources,offering a promising solution for advancing the emerging millimeter-wave microphone technology in real-world applications.This work could pave the way for more accurate and reliable sound detection systems,particularly in dynamic environments.展开更多
In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-...In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.展开更多
Influenza,an acute respiratory infectious disease caused by the influenza virus,exhibits distinct seasonal patterns in China,with peak activity occurring in winter and spring in northern regions,and in winter and summ...Influenza,an acute respiratory infectious disease caused by the influenza virus,exhibits distinct seasonal patterns in China,with peak activity occurring in winter and spring in northern regions,and in winter and summer in southern areas[1].The World Health Organization(WHO)emphasizes that early warning and epidemic intensity assessments are critical public health strategies for influenza prevention and control.Internet-based flu surveillance,with real-time data and low costs,effectively complements traditional methods.The Baidu Search Index,which reflects flu-related queries,strongly correlates with influenza trends,aiding in regional activity assessment and outbreak tracking[2].展开更多
Members of TMAS-the Swedish textile machinery association-are providing crucial manufacturing and automation services to the filtration sector which is an often invisible but very significant part of the global textil...Members of TMAS-the Swedish textile machinery association-are providing crucial manufacturing and automation services to the filtration sector which is an often invisible but very significant part of the global textile industry.Technical woven and nonwoven fabrics are used in a wide variety of products in filtration systems for air,gas and liquid filtration,touching on almost every facet of life in the 21st Century.展开更多
Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+...Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.展开更多
An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is p...An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.展开更多
With the burgeoning growth of aquaculture industry,high concentration of NH_(4)^(+)-N,phosphorus and tetracycline are the prevalent pollutants in aquaculturewastewater posing a significant health risk to aquatic organ...With the burgeoning growth of aquaculture industry,high concentration of NH_(4)^(+)-N,phosphorus and tetracycline are the prevalent pollutants in aquaculturewastewater posing a significant health risk to aquatic organisms.Therefore,an effective method for treating aquaculture wastewater should be urgently explored.Simultaneous removal of NH_(4)^(+)-N,phosphorus,tetracycline,and chemical oxygen demand(COD)in aquaculture wastewater was developed bymoving bed biofilm reactor(MBBR)under co-metabolic substances.The result showed that co-metabolism substances had different effects on MBBR performance,and 79.4%of tetracycline,68.2%of NH_(4)^(+)-N,61.3%of total nitrogen,88.3%of COD,and 38.1%of total phosphorus(TP)were synchronously removed with sodium acetate as a co-metabolic carbon source.Protein(PN),polysaccharide(PS),and electron transfer system activity were used to evaluate the MBBR performances,suggesting that PN/PS ratio was 1.48,0.91,1.07,3.58,and 0.79 at phases Ⅰ-Ⅴ.Additionally,a mode of tetracycline degradation and TP removal was explored,and the cell apoptosis was evaluated by flow cytometry.The result suggested that 74%,83%,and 83%of tetracycline were degraded by extracellular extracts,intracellular extracts,and cell debris,and there was no difference between extracts and non-enzyme in TP removal.The ratio of viable and dead cells from biofilm reached 33.3%and 7.68%with sodium acetate as a co-metabolic carbon source.Furthermore,Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal.This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.展开更多
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ...This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.展开更多
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.52192693,52192690,52371270,U20A20327)the National Key Research and Development Program of China(Nos.2021YFC2803400).
文摘Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration.
文摘An improved meshfree moving-Kriging(MK)formulation for free vibration analysis of functionally graded material-functionally graded carbon nanotube-reinforced composite(FGM-FGCNTRC)sandwich shells is first proposed in this article.The proposed sandwich structure consists of skins of FGM layers and an FGCNTRC core.This structure possesses all the advantages of FGM and FGCNTRC,including high electrical or thermal insulating properties,high fatigue resistance,good corrosion resistance,high stiffness,low density,high strength,and high aspect ratios.Such sandwich structures can be used to replace conventional FGM structures.The present formulation has been established by using an improved meshfree MK method and the first-order shear deformation shell theory(FSDT).The effective material characteristics of the FGM-skin layers and the FGCNTRC core were calculated using the rule of mixture.Key parameters and factors such as the thickness-to-radius ratio,the length-to-radius ratio,layer-thickness ratios,CNT distributions,the volume fraction of CNTs,the power-law index,and various boundary conditions were rigorously investigated.A nonlinear CNT distribution that we term FG-nX is first proposed in this work,and many new results of FGM-FGCNTRC sandwich shells have been provided.
基金supported by a grant No. 23-19-00039 of Russian Research Fund “Theoretical basis and application tools for developing a system of intellectual fleet planning and support of decisions on Arctic navigation”。
文摘In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow for more accurate prediction of the ice performance of a designed ship and provide inputs for designers of ship power and automation systems. Preliminary calculations of ship propulsion and thrust characteristics in ice can enable predictions of full-scale ice resistance without measuring the propeller thrust during sea trials. Measuring propeller revolutions,ship speed, and the power delivered to propellers could be sufficient to determine the propeller thrust of the vessel. At present, significant difficulties arise in determining the thrust of icebreakers and ice-class ships in ice conditions. These challenges are related to the fact that the traditional system of propeller/hull interaction coefficients does not function correctly in ice conditions. The wake fraction becomes negative and tends to minus infinity starting from a certain value of the propeller advance coefficient. This issue prevents accurate determination of the performance characteristics, thrust, and rotational speed of the propulsors. In this study, an alternative system of propeller/hull interaction coefficients for ice is proposed. It enables the calculation of all propulsion parameters in ice based on standard hydrodynamic tests with selfpropulsion models. An experimental method is developed to determine alternative propeller/hull interaction coefficients. A prediction method is suggested to determine propulsion performance in ice based on the alternative interaction coefficient system. A case study applying the propulsion prediction method for ice conditions is provided. This study also discusses the following issues of ship operation in ice: the scale effect of icebreaker propellers and the prospects for introducing an ice interaction coefficient.
文摘From a very early period,the Chinese already vaguely sensed that the cultivation of crops required an intricate system.The third century BCE work Master Lü’s Spring and Autumn Annals(Lüshi chunqiu吕氏春秋)states that crops were fed by heaven and raised by earth,and that harvests depended on the farmers who worked the land.Therefore,these three elements,that is,heaven,earth,and farmers,together with crops,jointly constituted a complex community.According to the ancient Chinese,moving a crop away from its native place could bring huge benefits to the new area to which the crop was moved.When writing and compiling Fundamentals of Agriculture and Sericulture(Nongsang jiyao农桑辑要),the officials of the Agricultural Extension Bureau司农司in the Yuan dynasty(1271–1368)excitedly noted the changes brought about by non-native crops to the agriculture of the Central Plains of China中原:“Ramie(Boehmeria nivea)is a crop native to southern China,while cotton(Gossypium herbaceum)comes from the Western Regions西域.In recent years,nevertheless,ramie has been introduced to Henan,while cotton has started to be planted in Shaanxi.The two crops thrive and show no difference from local crops.Farmers in the two regions benefit a lot therefrom”(Agricultural Extension Bureau 1888,juan 2:21).
基金supported by the National Natural Science Foundation of China(No.12102096)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515011885)the Research Fund of National Key Laboratory of Aerospace Physics in Fluids,China(No.2024-APF-KFQMJJ-08)。
文摘Aeroelastic control is a critical technique for high-aspect-ratio flexible wings.A novel aeroelastic control method is introduced,utilizing the internal Moving Mass Control(MMC)technique,which demonstrates the potential to fulfill hybrid control demands without incurring a drag penalty.Dynamic equations for a flexible wing equipped with a spanwise moving mass under unsteady aerodynamic loading are derived using mass position as the input variable.Controloriented analyses indicate that intrinsic structural frequencies,flutter characteristics,and gust response can be actively modified by varying the spanwise and chordwise positions of the mass element.Among these,the chordwise position exerts a more significant impact on the structural modes and flutter speed of the wing.A hybrid aeroelastic control system,incorporating motion planning and control law,is proposed to evaluate real-time performance in Active Flutter Suppression(AFS)and Gust Load Alleviation(GLA).Control outcomes suggest that,with a mass ratio of 1/16 and a half-chord installation area for the guide rail,flutter speed increases by about 10%.Additionally,excitation amplitudes across different gust frequencies are substantially mitigated,achieving a maximum reduction of vibration amplitude by about 73%.These findings offer a comprehensive understanding of the MMC technique and its application to flexible aircraft.
文摘This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金funded by National Natural Science Foundation of China No.62302520.
文摘Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness.
基金supported by the National Natural Science Foundation of China(Nos.62120106003 and 62173301)。
文摘The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.
基金sponsored by the National Natural Science Foundation of China(62121003,T2293730,T2293731,61960206012,62333020,and 62171434)the National Key Research and Development Program of China(2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(2021ZD02016030)。
文摘Intracortical neural interfaces directly connect brain neurons with external devices to achieve high temporal resolution and spatially precise sampling of neural activity.When applied to freely moving animals,this technology provides in-depth insight into the underlying neural mechanisms for their movement and cognition in real-world scenarios.However,the application of implanted devices in freely moving animals is limited by restrictions on their behavioral freedom and physiologic impact.In this paper,four technological directions for ideal implantable neural interface devices are analyzed:higher spatial density,improved biocompatibility,enhanced multimodal detection of electrical/neurotransmitter signals,and more effective neural modulation.Finally,we discuss how these technological developments have been applied to freely moving animals to provide better insight into neuroscience and clinical medicine.
基金supported in part by the National Natural Science Foundation of China(Numbers 62171445,62471477 and 62201592).
文摘The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.
基金supported by the National Natural Science Foundation of China under Grant No.51905341the Natural Science Foundation of Shanghai under Grant 22ZR1433900.
文摘The emerging millimeter-wave microphones have garnered considerable attention in recent years due to their potential for sound detection in various applications,particularly in situations where traditional microphones may be impractical.However,despite their promise,there is a notable lack of evidence demonstrating high-quality sound recovery of moving sources,which remains a significant challenge in thefield.This paper addresses this critical gap by proposing a novel method for displacement alignment that improves the detection and recovery of sound signals from moving sources.The proposed method works byfirst aligning the displacement of the sound source over time,which ensures that the signals are synchronized and avoids interference from movement of sources.Subsequently,precise surface vibrations are extracted from the aligned signals,providing data for sound recovery.Afinite impulse response(FIR)filter is applied to remove low-frequency motion,which often interferes with the clarity of the detected sound.Experimental results demonstrate the method’s effectiveness in recovering high-quality sound from moving sources,offering a promising solution for advancing the emerging millimeter-wave microphone technology in real-world applications.This work could pave the way for more accurate and reliable sound detection systems,particularly in dynamic environments.
基金supported by the National Natural Science Foundation of China(U21B2028).
文摘In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.
基金supported by the National Key Research and Development Program of China(Project No.2023YFC2307500).
文摘Influenza,an acute respiratory infectious disease caused by the influenza virus,exhibits distinct seasonal patterns in China,with peak activity occurring in winter and spring in northern regions,and in winter and summer in southern areas[1].The World Health Organization(WHO)emphasizes that early warning and epidemic intensity assessments are critical public health strategies for influenza prevention and control.Internet-based flu surveillance,with real-time data and low costs,effectively complements traditional methods.The Baidu Search Index,which reflects flu-related queries,strongly correlates with influenza trends,aiding in regional activity assessment and outbreak tracking[2].
文摘Members of TMAS-the Swedish textile machinery association-are providing crucial manufacturing and automation services to the filtration sector which is an often invisible but very significant part of the global textile industry.Technical woven and nonwoven fabrics are used in a wide variety of products in filtration systems for air,gas and liquid filtration,touching on almost every facet of life in the 21st Century.
基金Supported by the Academic Achievement Re-cultivation Projects of Jingdezhen Ceramic University(Grant Nos.215/20506341215/20506277)the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)。
文摘Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.
基金supported by the Ministère des Armées,and the Agence de l'Innovation de Défense(AID).
文摘An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.
基金supported by the Research Support Project for Stabilizing and Introducing Talents of Anhui Agricultural University(No.rc522010).
文摘With the burgeoning growth of aquaculture industry,high concentration of NH_(4)^(+)-N,phosphorus and tetracycline are the prevalent pollutants in aquaculturewastewater posing a significant health risk to aquatic organisms.Therefore,an effective method for treating aquaculture wastewater should be urgently explored.Simultaneous removal of NH_(4)^(+)-N,phosphorus,tetracycline,and chemical oxygen demand(COD)in aquaculture wastewater was developed bymoving bed biofilm reactor(MBBR)under co-metabolic substances.The result showed that co-metabolism substances had different effects on MBBR performance,and 79.4%of tetracycline,68.2%of NH_(4)^(+)-N,61.3%of total nitrogen,88.3%of COD,and 38.1%of total phosphorus(TP)were synchronously removed with sodium acetate as a co-metabolic carbon source.Protein(PN),polysaccharide(PS),and electron transfer system activity were used to evaluate the MBBR performances,suggesting that PN/PS ratio was 1.48,0.91,1.07,3.58,and 0.79 at phases Ⅰ-Ⅴ.Additionally,a mode of tetracycline degradation and TP removal was explored,and the cell apoptosis was evaluated by flow cytometry.The result suggested that 74%,83%,and 83%of tetracycline were degraded by extracellular extracts,intracellular extracts,and cell debris,and there was no difference between extracts and non-enzyme in TP removal.The ratio of viable and dead cells from biofilm reached 33.3%and 7.68%with sodium acetate as a co-metabolic carbon source.Furthermore,Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal.This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.
文摘This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.