We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron...We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron hopping parameters,the strong-coupling pseudogap in the two-dimensional Hubbard model can be either enhanced or suppressed in the doped Mott insulator regime.We find that in underdoped cases,the closing of pseudogap leads to a significant enhancement of superconductivity,indicating competition between the two in the underdoped regime.In contrast,at large dopings,suppressing the pseudogap is accompanied by a concurrent decrease in the superconducting transition temperature Tc,which can be attributed to a reduction in antiferromagnetic correlations behind both the pseudogap and superconductivity.We elucidate this evolving relationship between pseudogap and superconductivity across different doping regimes.展开更多
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
Density order is usually a consequence of the competition between long-range and short-range interactions.Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition b...Density order is usually a consequence of the competition between long-range and short-range interactions.Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition between frustrations and local interactions.This transition is found in a Bose–Hubbard model on a frustrated triangle lattice with an extra pairing term.Furthermore,we find a quantum phase transition between two different density ordered superfluids,which is beyond the Landau–Ginzburg(LG)paradigm.A U(1)symmetry is emergent at the critical point,while the symmetry in each density ordered superfluid is Z_(2)×Z_(3).We call the transition a‘shamrock transition’,due to its degenerate ground state in the parameter space being a shamrock-like curve rather than a circle in an LG-type transition.Effective low energy theories are established for the two transitions mentioned above and we find their resemblance and differences with clock models.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12274472,12494594,12494591,and 92165204)National Key Research and Development Program of China(Grant No.2022YFA1402802)+2 种基金Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)Guangdong Fundamental Research Center for Magnetoelectric Physics(Grant No.2024B0303390001)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2401010)。
文摘We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron hopping parameters,the strong-coupling pseudogap in the two-dimensional Hubbard model can be either enhanced or suppressed in the doped Mott insulator regime.We find that in underdoped cases,the closing of pseudogap leads to a significant enhancement of superconductivity,indicating competition between the two in the underdoped regime.In contrast,at large dopings,suppressing the pseudogap is accompanied by a concurrent decrease in the superconducting transition temperature Tc,which can be attributed to a reduction in antiferromagnetic correlations behind both the pseudogap and superconductivity.We elucidate this evolving relationship between pseudogap and superconductivity across different doping regimes.
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金supported by the Beijing Natural Science Foundation(Z180013)(YC)National Natural Science Foundation of China(NSFC)under Grant No.12174358(YC)and No.11734010(YC and CW)MOST Grant No.2016YFA0301600(CW)。
文摘Density order is usually a consequence of the competition between long-range and short-range interactions.Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition between frustrations and local interactions.This transition is found in a Bose–Hubbard model on a frustrated triangle lattice with an extra pairing term.Furthermore,we find a quantum phase transition between two different density ordered superfluids,which is beyond the Landau–Ginzburg(LG)paradigm.A U(1)symmetry is emergent at the critical point,while the symmetry in each density ordered superfluid is Z_(2)×Z_(3).We call the transition a‘shamrock transition’,due to its degenerate ground state in the parameter space being a shamrock-like curve rather than a circle in an LG-type transition.Effective low energy theories are established for the two transitions mentioned above and we find their resemblance and differences with clock models.