This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquis...This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquisition setups and evaluates conventional and metaheuristic optimization algorithms,highlighting their advantages,limitations,and applications.The paper explores emerging trends in model structures and parameter optimization techniques that address specific perturbations such as varying loads,noise,and friction.A comparative performance analysis is also included to assess several widely used optimization methods,including least squares(LS),particle swarm optimization(PSO),grey wolf optimizer(GWO),bat algorithm(BA),genetic algorithm(GA)and neural network for system identification of a specific case of a perturbed DC motor in both open-loop(OL)and closed-loop(CL)settings.Results show that GWO achieves the lowest error overall,excelling in OL scenarios,while PSO performs best in CL due to its synergy with feedback control.LS proves efficient in CL settings,whereas GA and BA rely heavily on feedback for improved performance.The paper also outlines potential research directions aimed at advancing motor modeling techniques,including integration of advanced machine learning methods,hybrid learning-based methods,and adaptive modeling techniques.These insights offer a foundation for advancing motor modeling techniques in real-world applications.展开更多
Hanoi’s rapid urbanization has led to a surge in private vehicle ownership, particularly motorcycles, amidst inadequate public transportation infrastructure. Despite government efforts, many still prefer motorized tr...Hanoi’s rapid urbanization has led to a surge in private vehicle ownership, particularly motorcycles, amidst inadequate public transportation infrastructure. Despite government efforts, many still prefer motorized transport, citing mobility and safety concerns, exacerbated by insufficient pedestrian infrastructure. This study examines the motivations behind this reliance on motorized vehicles, particularly motorcycles, in Hanoi. Findings reveal safety and convenience as primary factors driving motorized transport use, especially for accessing bus stations. Economic incentives could promote non-motorized travel and public transport adoption. Policy implications highlight the importance of addressing economic factors and improving access infrastructure to manage motorized vehicle reliance and foster sustainable urban mobility in Hanoi.展开更多
With the continuous advancement in medical technology,endoscopy has gained significant attention as a crucial diagnostic tool.The introduction of motorized spiral enteroscopy(MSE)represents a significant advancement i...With the continuous advancement in medical technology,endoscopy has gained significant attention as a crucial diagnostic tool.The introduction of motorized spiral enteroscopy(MSE)represents a significant advancement in the diagnosis and treatment of small bowel diseases.While there are safety concerns and a high reliance on the operator’s skills,MSE should not be disregarded entirely.Instead,it should be considered as a supplementary endoscopic technique,particularly in situations where conventional endoscopy proves ineffective.Through continuous research and technical optimization,MSE has the potential to become an im-portant addition to the endoscopy toolbox in the future.We call on colleagues in the industry to work together to promote the improvement of MSE technology through continuous research and practice,with the aim to bring out its unique value in endoscopy while ensuring patient safety.展开更多
A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
Redesign of motorized and non-motorized transport in cities and sustainable mobility possibilities and utilization of already occupied areas for motorized and non-motorized transport in cities. Reserved area for publi...Redesign of motorized and non-motorized transport in cities and sustainable mobility possibilities and utilization of already occupied areas for motorized and non-motorized transport in cities. Reserved area for public transport may be the redesign much more to take advantage of without taking up new space in cities. Redesigned solutions shown in the work of public mass transport and the redesign of non-motorized transport, bicycle and pedestrian paths point to the improved use and safety of movement of passengers, cyclists and pedestrians. This paper presents five redesigned concept designs as improving existing forms of transport and movement of cyclists and pedestrians in cities. Redesigned conceptual designs of motorized and non-motorized transport in cities should serve as ideas for the growing problems of urban development in the segment of insufficient surface for pedestrians and cyclists, as well as sustainable mobility transport people in the city.展开更多
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos...To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.展开更多
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearin...As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearing radial stiffness and number of model and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy- namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.展开更多
High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec...High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.展开更多
The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istic...The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istics of the high speed motorized spindle in the paper, two major heat sources are analyzed and quantity of heat is calculated. The finite element analysis model of motorized spindle thermal characteristics is built through ap- plying the ANSYS Workbench. The thermal steady state, heat-structure coupling characteristics is carried out based on the cooling coefficient of thermal boundary conditions, and taking heating value of the bearing and mo- tor as thermal load, the temperature field distribution and thermal deformation of the spindle system are obtained, which prepare fox" the next thermal error modeling展开更多
A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,...A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.展开更多
BACKGROUND Femoral lengthening is a procedure of great importance in the treatment of congenital and acquired limb deficiencies.Technological advances have led to the latest designs of fully implantable motorized intr...BACKGROUND Femoral lengthening is a procedure of great importance in the treatment of congenital and acquired limb deficiencies.Technological advances have led to the latest designs of fully implantable motorized intramedullary lengthening nails.The use of these nails has increased over the last few years.AIM To review and critically appraise the literature comparing the outcome of femoral lengthening in children using intramedullary motorized lengthening nails to external fixation.METHODS Electronic databases(MEDLINE,CINAHL,EMBASE,Cochrane)were systematically searched in November 2019 for studies comparing the outcome of femoral lengthening in children using magnetic lengthening nails and external fixation.The outcomes included amount of gained length,healing index,complications and patient reported outcomes.RESULTS Of the 452 identified studies,only two(retrospective and non-randomized)met the inclusion criteria.A total of 91 femora were included.In both studies,the age of patients treated with nails ranged from 15 to 21 years compared to 9 to 15 years for patients in the external fixation group.Both devices achieved the target length.Prevalence of adverse events was less in the nail(60%-73%)than in the external fixation(81%-100%)group.None of the studies presented patient reported outcomes.CONCLUSION The clinical effectiveness of motorized nails is equivalent or superior to external fixation for femoral lengthening in young patients.The available literature is limited and does not provide evidence on patient quality of life or cost effectiveness of the interventions.展开更多
To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High...To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (IPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.展开更多
In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar ener...In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar energy exploitation through building façades was addressed through motorized solar photovoltaic louvers(MPVL).On the other hand,proponents exalted the benefits of MPVL overlooking the typical analyses.In this communication,we attempted to perform a thorough industrial system evaluation of the MPVL.This communication presents a methodology to validate the industrial claims about MPVL devices and their economic efficiency and the insight on how geographical location influences their utilization and augment their potential benefits.This task is carried out by evaluating the extent of solar energy that can be harvested using solar photovoltaic system(PVSYST)software and investigating whether existing product claims are associated with MPVL are feasible in different locations.The performance and operational losses(temperature,internal network,power electronics)were evaluated.To design and assess the performance of different configurations based on the geographical analogy,simulation tools were successfully carried out based on different topographical locations.Based on these findings,various factors affect the employment of MPVL such as geographical and weather conditions,solar irradiation,and installation efficiency.tt is assumed that we successfully shed light and provided insights into the complexity associated with MPVL.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomar...Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomarker research is currently receiving more attention,and new candidate biomarkers are constantly being discovered.This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons.We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy,which are classified as either specific or non-specific biomarkers.This review provides new insights into the pathogenesis of spinal muscular atrophy,the mechanism of biomarkers in response to drug-modified therapies,the selection of biomarker candidates,and would promote the development of future research.Furthermore,the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
The model of the differential steering system(DSS) of electric vehicle with motorized wheels and the three-degree-of-freedom dynamic model of vehicle are built.Based on these models,the concepts and quantitative expre...The model of the differential steering system(DSS) of electric vehicle with motorized wheels and the three-degree-of-freedom dynamic model of vehicle are built.Based on these models,the concepts and quantitative expressions of steering road feel,steering portability and steering stability are proposed.Through integrating the Monte Carlo descriptive sampling,elitist non-dominated sorting genetic algorithm(NSGA-II) and Taguchi robust design method,the system parameters are optimized with steering road feel and steering portability as optimization targets,and steering stability and steering portability as constraints.The simulation results show that the system optimized based on quality engineering can improve the steering road feel,guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the electric vehicle with motorized wheels system.展开更多
Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering eco...Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors.展开更多
基金supported by the Malaysia Ministry of Higher Education under Fundamental Research Grant Scheme with Project Code:FRGS/1/2024/TK07/USM/02/3.
文摘This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquisition setups and evaluates conventional and metaheuristic optimization algorithms,highlighting their advantages,limitations,and applications.The paper explores emerging trends in model structures and parameter optimization techniques that address specific perturbations such as varying loads,noise,and friction.A comparative performance analysis is also included to assess several widely used optimization methods,including least squares(LS),particle swarm optimization(PSO),grey wolf optimizer(GWO),bat algorithm(BA),genetic algorithm(GA)and neural network for system identification of a specific case of a perturbed DC motor in both open-loop(OL)and closed-loop(CL)settings.Results show that GWO achieves the lowest error overall,excelling in OL scenarios,while PSO performs best in CL due to its synergy with feedback control.LS proves efficient in CL settings,whereas GA and BA rely heavily on feedback for improved performance.The paper also outlines potential research directions aimed at advancing motor modeling techniques,including integration of advanced machine learning methods,hybrid learning-based methods,and adaptive modeling techniques.These insights offer a foundation for advancing motor modeling techniques in real-world applications.
文摘Hanoi’s rapid urbanization has led to a surge in private vehicle ownership, particularly motorcycles, amidst inadequate public transportation infrastructure. Despite government efforts, many still prefer motorized transport, citing mobility and safety concerns, exacerbated by insufficient pedestrian infrastructure. This study examines the motivations behind this reliance on motorized vehicles, particularly motorcycles, in Hanoi. Findings reveal safety and convenience as primary factors driving motorized transport use, especially for accessing bus stations. Economic incentives could promote non-motorized travel and public transport adoption. Policy implications highlight the importance of addressing economic factors and improving access infrastructure to manage motorized vehicle reliance and foster sustainable urban mobility in Hanoi.
文摘With the continuous advancement in medical technology,endoscopy has gained significant attention as a crucial diagnostic tool.The introduction of motorized spiral enteroscopy(MSE)represents a significant advancement in the diagnosis and treatment of small bowel diseases.While there are safety concerns and a high reliance on the operator’s skills,MSE should not be disregarded entirely.Instead,it should be considered as a supplementary endoscopic technique,particularly in situations where conventional endoscopy proves ineffective.Through continuous research and technical optimization,MSE has the potential to become an im-portant addition to the endoscopy toolbox in the future.We call on colleagues in the industry to work together to promote the improvement of MSE technology through continuous research and practice,with the aim to bring out its unique value in endoscopy while ensuring patient safety.
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
文摘Redesign of motorized and non-motorized transport in cities and sustainable mobility possibilities and utilization of already occupied areas for motorized and non-motorized transport in cities. Reserved area for public transport may be the redesign much more to take advantage of without taking up new space in cities. Redesigned solutions shown in the work of public mass transport and the redesign of non-motorized transport, bicycle and pedestrian paths point to the improved use and safety of movement of passengers, cyclists and pedestrians. This paper presents five redesigned concept designs as improving existing forms of transport and movement of cyclists and pedestrians in cities. Redesigned conceptual designs of motorized and non-motorized transport in cities should serve as ideas for the growing problems of urban development in the segment of insufficient surface for pedestrians and cyclists, as well as sustainable mobility transport people in the city.
基金The National Natural Science Foundation of China(No.51465035)the Natural Science Foundation of Gansu,China(No.20JR5R-A466)。
文摘To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
基金Special Topic of the Ministry of Education about Humanities and Social Sciences(12JDGC007)National Science and Technology Support Project(2011BAF09B01)Key State Science and Technology Projects(2009ZX04010-021)
文摘As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearing radial stiffness and number of model and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy- namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.
文摘High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.
文摘The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istics of the high speed motorized spindle in the paper, two major heat sources are analyzed and quantity of heat is calculated. The finite element analysis model of motorized spindle thermal characteristics is built through ap- plying the ANSYS Workbench. The thermal steady state, heat-structure coupling characteristics is carried out based on the cooling coefficient of thermal boundary conditions, and taking heating value of the bearing and mo- tor as thermal load, the temperature field distribution and thermal deformation of the spindle system are obtained, which prepare fox" the next thermal error modeling
基金Supported by the National Natural Science Foundation of China(51375007,51205191)the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University+1 种基金the Funds from the Postgraduate Creative Base in Nanjing University of Aeronautics and Astronauticsthe Research Funding of Nanjing University of Aeronautics and Astronautics(NS2013015)
文摘A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.
基金Supported by Children’s Hospital Charity and Industry(Nuvasive,CA,United States),No.5431.
文摘BACKGROUND Femoral lengthening is a procedure of great importance in the treatment of congenital and acquired limb deficiencies.Technological advances have led to the latest designs of fully implantable motorized intramedullary lengthening nails.The use of these nails has increased over the last few years.AIM To review and critically appraise the literature comparing the outcome of femoral lengthening in children using intramedullary motorized lengthening nails to external fixation.METHODS Electronic databases(MEDLINE,CINAHL,EMBASE,Cochrane)were systematically searched in November 2019 for studies comparing the outcome of femoral lengthening in children using magnetic lengthening nails and external fixation.The outcomes included amount of gained length,healing index,complications and patient reported outcomes.RESULTS Of the 452 identified studies,only two(retrospective and non-randomized)met the inclusion criteria.A total of 91 femora were included.In both studies,the age of patients treated with nails ranged from 15 to 21 years compared to 9 to 15 years for patients in the external fixation group.Both devices achieved the target length.Prevalence of adverse events was less in the nail(60%-73%)than in the external fixation(81%-100%)group.None of the studies presented patient reported outcomes.CONCLUSION The clinical effectiveness of motorized nails is equivalent or superior to external fixation for femoral lengthening in young patients.The available literature is limited and does not provide evidence on patient quality of life or cost effectiveness of the interventions.
文摘To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (IPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.
文摘In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar energy exploitation through building façades was addressed through motorized solar photovoltaic louvers(MPVL).On the other hand,proponents exalted the benefits of MPVL overlooking the typical analyses.In this communication,we attempted to perform a thorough industrial system evaluation of the MPVL.This communication presents a methodology to validate the industrial claims about MPVL devices and their economic efficiency and the insight on how geographical location influences their utilization and augment their potential benefits.This task is carried out by evaluating the extent of solar energy that can be harvested using solar photovoltaic system(PVSYST)software and investigating whether existing product claims are associated with MPVL are feasible in different locations.The performance and operational losses(temperature,internal network,power electronics)were evaluated.To design and assess the performance of different configurations based on the geographical analogy,simulation tools were successfully carried out based on different topographical locations.Based on these findings,various factors affect the employment of MPVL such as geographical and weather conditions,solar irradiation,and installation efficiency.tt is assumed that we successfully shed light and provided insights into the complexity associated with MPVL.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金supported by the Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education&Shanghai,No.CCTS-2022205the“Double World-Class Project”of Shanghai Jiaotong University School of Medicine(both to JZ)。
文摘Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomarker research is currently receiving more attention,and new candidate biomarkers are constantly being discovered.This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons.We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy,which are classified as either specific or non-specific biomarkers.This review provides new insights into the pathogenesis of spinal muscular atrophy,the mechanism of biomarkers in response to drug-modified therapies,the selection of biomarker candidates,and would promote the development of future research.Furthermore,the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51005115 and 51005248)the Science Fund of State Key Laboratory of Automotive Safety and Energy (Grant No. KF11201)
文摘The model of the differential steering system(DSS) of electric vehicle with motorized wheels and the three-degree-of-freedom dynamic model of vehicle are built.Based on these models,the concepts and quantitative expressions of steering road feel,steering portability and steering stability are proposed.Through integrating the Monte Carlo descriptive sampling,elitist non-dominated sorting genetic algorithm(NSGA-II) and Taguchi robust design method,the system parameters are optimized with steering road feel and steering portability as optimization targets,and steering stability and steering portability as constraints.The simulation results show that the system optimized based on quality engineering can improve the steering road feel,guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the electric vehicle with motorized wheels system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51005115, 51205191, and 51005248)the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University+1 种基金the Research Foundation of National Engineering Laboratory for Electric Vehicles (Grant No. 2012-NELEV-03)the Science Fund of State Key Laboratory of Automotive Safety and Energy(Grant No. KF11202)
文摘Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors.