In comparison to the alloys manufactured using the conventional means,microstructures of the alloys additively manufactured(AM)using techniques such as laser powder bed fusion(LPBF),directed en-ergy deposition(DED)and...In comparison to the alloys manufactured using the conventional means,microstructures of the alloys additively manufactured(AM)using techniques such as laser powder bed fusion(LPBF),directed en-ergy deposition(DED)and e-beam powder bed fusion(EPBF)are considerably more complex,making them unamenable for an easy interpretation even for a well-trained metallurgist.Keeping this in view,an overview of different grain morphologies that are observed in AM alloys is presented,with the objective of a systematic elucidation of the melt pool geometry and thermal history's role on the microstructural evolution.The second part of this review focuses on strategies that are available for manipulating the grain structures for tailoring the microstructures of AM alloys.展开更多
CoFe bimetallic hydroxides(CoFe BMHs)find wide applications as excellent catalysts in the field of water splitting.However,no study has systematically investigated the influence of the morphologies of CoFe BMHs on cat...CoFe bimetallic hydroxides(CoFe BMHs)find wide applications as excellent catalysts in the field of water splitting.However,no study has systematically investigated the influence of the morphologies of CoFe BMHs on catalyst performance.In this study,CoFe BMH nanoflowers(CoFe BMH NFs),CoFe BMH nanosheets(CoFe BMH NSHs),CoFe BMH nanorods(CoFe BMH NRs),and CoFe BMH nanospheres(CoFe BMH NSPs)were prepared on nickel foam via a hydrothermal method.CoFe BMH NSHs exhibited the most beneficial catalytic activity.At a current density of 100 mA·cm^(-2),its overpotential for oxygen evolution reaction(OER)was 282 mV,and the overall water splitting voltage was 2.05 V.The double-layer charging capacitance(Cdl)value of CoFe BMH NSHs was the largest in CoFe BMHs,which proves that CoFe BMH NSHs have the largest active area.Furthermore,the active site in the OER process was metal oxyhydroxide(MOOH)through in situ Raman characterization,and the generation of the active substance was an irreversible process.This work provides important insights into the design of catalyst morphologies and offers valuable guidelines for the enhancement of the performance of other catalysts.展开更多
The oligomerization of light olefins is considered a green production technology.Currently,the application of mordenite in isoamylene oligomerization faces two main challenges:low dimerization selectivity and poor sta...The oligomerization of light olefins is considered a green production technology.Currently,the application of mordenite in isoamylene oligomerization faces two main challenges:low dimerization selectivity and poor stability.In this work,a series of different SiO_(2)/Al_(2)O_(3) ratio mordenite are synthesized by utilizing hexamethyleneimine(HMI)as the organic structure directing agent,and it turns out that the rod-like zeolite with the ratio of SiO_(2)/Al_(2)O_(3)=14 exhibits the higher dimerization selectivity.The incorporation of TPOAC optimizes the pore structure and acid site distribution of the rod-like zeolite,which enables the samples to not only exhibit a conversion rate of isoamylene over 88.30% within 12 h,while maintaining good dimerization selectivity.These findings provide a promising approach for improving the efficiency and sustainability of olefin oligomerization processes.展开更多
AIM:To investigate the prevalence and types of eyelid disorders among an elderly population in China,underscoring the significance of eyelid health for the aging demographic.METHODS:A cross-sectional epidemiological s...AIM:To investigate the prevalence and types of eyelid disorders among an elderly population in China,underscoring the significance of eyelid health for the aging demographic.METHODS:A cross-sectional epidemiological survey was conducted on 3038 individuals over the age of 50,all of whom were evaluated at the community health center.Each participant underwent routine ophthalmic examinations and eyelid morphology evaluations by an ophthalmologist.Eyelid disorders and morphology were assessed through slit-lamp examination and direct visual inspection.The study analyzed the characteristics of common eyelid disorders,including blepharoptosis,dermatochalasis,eyelid tumors,entropion,lower eyelid retraction(LER)and ectropion,as well as eyelid morphologies such as sunken and bulging eyelids.Descriptive statistics were used for demographic data,Chi-square test analyzed gender distribution differences,and logistic regression calculated odds ratios for blepharoptosis(P<0.05 considered significant).RESULTS:The study revealed that eyelid disorders were present in 1250(41%)individuals,with blepharoptosis being the most common disorder(25%),followed by severe dermatochalasis(16%),eyelid tumors(9.3%),LER and ectropion(11%),and entropion(1.2%).Sunken eyelids were more prevalent in men(26%)than in women(17%).The study found significant associations between the presence of blepharoptosis and sunken upper eyelids[P=0.01,odds ratio(OR)=1.33],as well as male gender(P=0.038,OR=1.22).Additionally,the prevalence of blepharoptosis increased with age.CONCLUSION:Eyelid disorders are highly prevalent in older people and increase steeply with age.This study highlights the need for increased awareness of eyelid health among older individuals at risk for eyelid disorders and the importance of ophthalmic examination for early diagnosis and management of these disorders.展开更多
The fine control of active blend morphologies is crucial to achieve efficient and stable organic solar cells(OSCs).Herein,by introducing structurally simple,non-halogenated volatile solid additives,we have demonstrate...The fine control of active blend morphologies is crucial to achieve efficient and stable organic solar cells(OSCs).Herein,by introducing structurally simple,non-halogenated volatile solid additives,we have demonstrated that the polar 2-naphthonitrile(2-CAN)additives help modulate the kinetics of blend morphological evolution during film drying.It is revealed that 2-CAN favorably interacted with acceptor moieties,and the transition from presence to absence of additives triggered the arrangement and aggregation of acceptors,hence yielding the ordered molecular stacks in the bulk heterojunction(BHJ)blends.Optimal blend morphologies with fibril networks were established to improve the excitonic and charge dynamics of active blends,enabling PM6:L8-BO binary OSCs with the promising efficiency of 19.08%(with 2-CAN),which outperformed that of devices with non-polar naphthalene(NA)additives(18.18%)or without additive treatments(17.43%).Meanwhile,non-halogenated 2-CAN exhibited excellent processing features of reproducibility and versatility toward different active blends for fabricating efficient devices.Such 2-CAN-assisted devices with robust transport layers allowed maintaining decent thermal stabilities under continuous 85℃ of thermal annealing.Overall,this work provides an effective strategy on tuning blend morphologies for efficient organic photovoltaics.展开更多
The application of lithium metal anodes is hindered by low Coulombic efficiency(CE),serious lithium dendrites and volume expansion.An MnO/Polypropylene(PP)composite separator was developed to regulate lithium metal de...The application of lithium metal anodes is hindered by low Coulombic efficiency(CE),serious lithium dendrites and volume expansion.An MnO/Polypropylene(PP)composite separator was developed to regulate lithium metal deposition behaviors through in situ forming stable artificial solid electrolyte interface(SEI)passivating layers.The concentration of MnO in the cells can be maintained at a constant based on quite low solubility of MnO in the liquid electrolyte,and the dissolved MnO can be reduced to produce Li_(2)O and Mn metal nanoparticles,which can not only function as nucleating seeds of lithium metal deposits but also repair the broken SEI layer.Dendritic-free Li deposits can be obtained by simple separator coating.It can also improve the electrochemical performance of lithium metal batteries.And it is benefit for applications of Li metal anodes.展开更多
MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structure...MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.展开更多
With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstr...With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study o?ers a simple but effective approach to fabricate hybrid morphological features in micro-scale.With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study offers a simple but effective approach to fabricate hybrid morphological features in micro-scale.展开更多
Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and...Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrotherrnal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-repreeipitation process of HA.展开更多
Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing...Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.展开更多
Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–d...Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals.展开更多
It is commonly realized that polydispersity may significantly affect the surface modification properties of polymer brush systems. In light of this, we systematically study morphologies of bidisperse polyelectrolyte b...It is commonly realized that polydispersity may significantly affect the surface modification properties of polymer brush systems. In light of this, we systematically study morphologies of bidisperse polyelectrolyte brush grafted onto a spherical nanocolloid in the presence of trivalent counterions using molecular dynamics simulations. Via varying polydispersity, grafting density, and solvent selectivity, the effects of electrostatic correlation and excluded volume are focused, and rich phase behaviors of binary mixed polyelectrolyte brush are predicted, including a variety of pinned-patch morphologies at low grafting density and micelle-like structures at high grafting density. To pinpoint the mechanism of surface structure formation, the shape factor of two species of polyelectrolyte chains and the pair correlation function between monomers from different polyelectrolyte ligands are analyzed carefully. Also, electrostatic correlations, manifested as the bridging through trivalent counterions, are examined by identifying four states of trivalent counterions. Our simulation results may be useful for designing smart stimuli-responsive materials based on mixed polyelectrolyte coated surfaces.展开更多
We investigated microstructure morphologies of three asphalts(SK, Karamay, and Esso) used in China using atomic force microscopy(AFM). The topography and phase contrast images were obtained. Topographic profile an...We investigated microstructure morphologies of three asphalts(SK, Karamay, and Esso) used in China using atomic force microscopy(AFM). The topography and phase contrast images were obtained. Topographic profile and three dimensional images were described. Roughnesses of microstructure were calculated. And the chemical compositions of asphalt were tested to explain the microstructural mechanism of the asphalt. The results show that the topography and phase image in atomic force microscopy are appropriate to evaluate the microstructure of the asphalt binder. There are significant differences in microstructural morphologies including bee-like structure, topographic profile, 3D image, and roughness for three asphalts in this study. There are three different phases in microstructure of asphalt binder. The oil source and chemical composition of asphalt, especially asphaltenes content have a great influence on the microstructure.展开更多
Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C...Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C showed a monotonous increase of crystallization temperature compared to pure PPS. However, a further increase of curing time decreased the crystallization temperature. The change in the half-crystallization time (t1/2) was similar to the crystallization temperature. Thus, the cross-linking of PPS affected crystallization behaviors significantly. To a certain extent, crosslinks acted as nucleation agents, but excessive cross-linking hindered the crystallization. Morphologies observed by polarized optical microscopy suggested that thermal curing for as little as 1 day contributed to the spherulitic structure having a smaller size, that was not observed with pure PPS.展开更多
The effect of annealing temperature on the formation of the PtSi phase. distribution of silicides and the surface morphologies of silicides films is investigated by XPS. AFM. It is shown that the phase sequences of t...The effect of annealing temperature on the formation of the PtSi phase. distribution of silicides and the surface morphologies of silicides films is investigated by XPS. AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-st with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.展开更多
Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made...Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within.展开更多
Two new classes of growth morphologies, called doublons and seaweed, were simulated using a phase-field method. The evolution of doublon and seaweed morphologies was obtained in directional solidification. The influen...Two new classes of growth morphologies, called doublons and seaweed, were simulated using a phase-field method. The evolution of doublon and seaweed morphologies was obtained in directional solidification. The influence of orientation and velocity on the growth morphology was investigated. It was indicated that doublons preferred growing with its crystallographic axis aligned with the heat flow direction. Seaweed, on the other hand, could be obtained by tilting the crystalline axis to 45°. Stable doublons could only exist in a range of velocity regime. Beyond this regime the patterns formed would be unstable. The simulation results agreed with the reported experimental results qualitatively.展开更多
The physicochemical properties of surfaces have a great effect on the micro-morphologies of the crystal structures which are in contact with them.Understanding the interaction mechanism between the internal driving fo...The physicochemical properties of surfaces have a great effect on the micro-morphologies of the crystal structures which are in contact with them.Understanding the interaction mechanism between the internal driving forces of the crystal and external inducing forces of the surfaces is the prerequisite of controlling and obtaining the desirable morphologies.In this work,the dynamic density functional theory was applied to construct the free energy functional expression of polyethylene(PE)lattice,and the micro-dynamic evolution processes of PE lattice morphology near the surfaces with different properties were observed to reveal the interaction mechanism at atomic scale.The results showed that the physical and chemical properties of the external surfaces synergistically affect the morphologies in both the defect shapes and the distribution of the defect regions.In the absence of the contact surfaces,driven by the oriented interactions among different CH2 groups,PE lattices gradually grow and form a defect-free structure.Conversely,the presence of contact surfaces leads to lattice defects in the interfacial regions,and PE lattice shows different self-healing abilities around different surfaces.展开更多
Large catalogues of classified galaxy images have been useful in many studies of the universe in astronomy. There are too many objects to classify manually in the Sloan Digital Sky Survey, one of the premier data sour...Large catalogues of classified galaxy images have been useful in many studies of the universe in astronomy. There are too many objects to classify manually in the Sloan Digital Sky Survey, one of the premier data sources in astronomy. Therefore, efficient machine learning and classification algorithms are required to automate the classifying process. We propose to apply the Support Vector Machine (SVM) algorithm to classify galaxy morphologies and Krylov iterative methods to improve runtime of the classification. The accuracy of the classification is measured on various categories of galaxies from the survey. A three-class algorithm is presented that makes use of multiple SVMs. This algorithm is used to assign the categories of spiral, elliptical, and irregular galaxies. A selection of Krylov iterative solvers are compared based on their efficiency and accuracy of the resulting classification. The experimental results demonstrate that runtime can be significantly improved by utilizing Krylov iterative methods without impacting classification accuracy. The generalized minimal residual method (GMRES) is shown to be the most efficient solver to classify galaxy morphologies.展开更多
A method for observing the three-dimensional morphologies of inclusions by deeply eroding a steel sample with a kind of organic solution composed of bromine water, acetone, and HCl (volume ratio, 45:45:10) was int...A method for observing the three-dimensional morphologies of inclusions by deeply eroding a steel sample with a kind of organic solution composed of bromine water, acetone, and HCl (volume ratio, 45:45:10) was introduced. Four different kinds of inclusions in ultra low carbon steel were compared by metallographic observation and erosion observation. The results show that the three-dimensional morphologies of different kinds of inclusions could be observed clearly and simply after erosion. The method is useful for the observation and analysis of inclusions made by deep erosion. It also provides a new way to control and remove inclusions based on the true morphologies of inclusions.展开更多
基金supported by the Agency for Science,Technology and Research(A∗STAR)of Singapore via the Structural Metal Alloys Programme(No.A18B1b0061)the National Natu-ral Science Foundation of China(No.W2411048)support from the Youth Innovation Promotion Association CAS(2021188).
文摘In comparison to the alloys manufactured using the conventional means,microstructures of the alloys additively manufactured(AM)using techniques such as laser powder bed fusion(LPBF),directed en-ergy deposition(DED)and e-beam powder bed fusion(EPBF)are considerably more complex,making them unamenable for an easy interpretation even for a well-trained metallurgist.Keeping this in view,an overview of different grain morphologies that are observed in AM alloys is presented,with the objective of a systematic elucidation of the melt pool geometry and thermal history's role on the microstructural evolution.The second part of this review focuses on strategies that are available for manipulating the grain structures for tailoring the microstructures of AM alloys.
基金supported by the National Science Fund for Distinguished Young Scholars(No.52025041)the National Natural Science Foundation of China(Nos.52474319,52250091,U2341267,and 52450003)+1 种基金the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-02C2)supported by the Interdisciplinary Research Project for Young Teachers of USTB,China(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-GD23-003).
文摘CoFe bimetallic hydroxides(CoFe BMHs)find wide applications as excellent catalysts in the field of water splitting.However,no study has systematically investigated the influence of the morphologies of CoFe BMHs on catalyst performance.In this study,CoFe BMH nanoflowers(CoFe BMH NFs),CoFe BMH nanosheets(CoFe BMH NSHs),CoFe BMH nanorods(CoFe BMH NRs),and CoFe BMH nanospheres(CoFe BMH NSPs)were prepared on nickel foam via a hydrothermal method.CoFe BMH NSHs exhibited the most beneficial catalytic activity.At a current density of 100 mA·cm^(-2),its overpotential for oxygen evolution reaction(OER)was 282 mV,and the overall water splitting voltage was 2.05 V.The double-layer charging capacitance(Cdl)value of CoFe BMH NSHs was the largest in CoFe BMHs,which proves that CoFe BMH NSHs have the largest active area.Furthermore,the active site in the OER process was metal oxyhydroxide(MOOH)through in situ Raman characterization,and the generation of the active substance was an irreversible process.This work provides important insights into the design of catalyst morphologies and offers valuable guidelines for the enhancement of the performance of other catalysts.
基金supported by the National Natural Science Foundation of China(21776505)。
文摘The oligomerization of light olefins is considered a green production technology.Currently,the application of mordenite in isoamylene oligomerization faces two main challenges:low dimerization selectivity and poor stability.In this work,a series of different SiO_(2)/Al_(2)O_(3) ratio mordenite are synthesized by utilizing hexamethyleneimine(HMI)as the organic structure directing agent,and it turns out that the rod-like zeolite with the ratio of SiO_(2)/Al_(2)O_(3)=14 exhibits the higher dimerization selectivity.The incorporation of TPOAC optimizes the pore structure and acid site distribution of the rod-like zeolite,which enables the samples to not only exhibit a conversion rate of isoamylene over 88.30% within 12 h,while maintaining good dimerization selectivity.These findings provide a promising approach for improving the efficiency and sustainability of olefin oligomerization processes.
基金Supported by the National Natural Science Foundation of China(No.82101176)Natural Science Foundation of Zhejiang Province(No.LTGD23H120002).
文摘AIM:To investigate the prevalence and types of eyelid disorders among an elderly population in China,underscoring the significance of eyelid health for the aging demographic.METHODS:A cross-sectional epidemiological survey was conducted on 3038 individuals over the age of 50,all of whom were evaluated at the community health center.Each participant underwent routine ophthalmic examinations and eyelid morphology evaluations by an ophthalmologist.Eyelid disorders and morphology were assessed through slit-lamp examination and direct visual inspection.The study analyzed the characteristics of common eyelid disorders,including blepharoptosis,dermatochalasis,eyelid tumors,entropion,lower eyelid retraction(LER)and ectropion,as well as eyelid morphologies such as sunken and bulging eyelids.Descriptive statistics were used for demographic data,Chi-square test analyzed gender distribution differences,and logistic regression calculated odds ratios for blepharoptosis(P<0.05 considered significant).RESULTS:The study revealed that eyelid disorders were present in 1250(41%)individuals,with blepharoptosis being the most common disorder(25%),followed by severe dermatochalasis(16%),eyelid tumors(9.3%),LER and ectropion(11%),and entropion(1.2%).Sunken eyelids were more prevalent in men(26%)than in women(17%).The study found significant associations between the presence of blepharoptosis and sunken upper eyelids[P=0.01,odds ratio(OR)=1.33],as well as male gender(P=0.038,OR=1.22).Additionally,the prevalence of blepharoptosis increased with age.CONCLUSION:Eyelid disorders are highly prevalent in older people and increase steeply with age.This study highlights the need for increased awareness of eyelid health among older individuals at risk for eyelid disorders and the importance of ophthalmic examination for early diagnosis and management of these disorders.
基金funded by the National Natural Science Foundation of China(No.22125901)the National Key Research and Development Program of China(No.2019YFA0705900)+1 种基金the Fundamental Research Funds for the Central Universities(226-2024-00005)the Scientific Research Project of China Three Gorges Corporation(202303014)。
文摘The fine control of active blend morphologies is crucial to achieve efficient and stable organic solar cells(OSCs).Herein,by introducing structurally simple,non-halogenated volatile solid additives,we have demonstrated that the polar 2-naphthonitrile(2-CAN)additives help modulate the kinetics of blend morphological evolution during film drying.It is revealed that 2-CAN favorably interacted with acceptor moieties,and the transition from presence to absence of additives triggered the arrangement and aggregation of acceptors,hence yielding the ordered molecular stacks in the bulk heterojunction(BHJ)blends.Optimal blend morphologies with fibril networks were established to improve the excitonic and charge dynamics of active blends,enabling PM6:L8-BO binary OSCs with the promising efficiency of 19.08%(with 2-CAN),which outperformed that of devices with non-polar naphthalene(NA)additives(18.18%)or without additive treatments(17.43%).Meanwhile,non-halogenated 2-CAN exhibited excellent processing features of reproducibility and versatility toward different active blends for fabricating efficient devices.Such 2-CAN-assisted devices with robust transport layers allowed maintaining decent thermal stabilities under continuous 85℃ of thermal annealing.Overall,this work provides an effective strategy on tuning blend morphologies for efficient organic photovoltaics.
文摘The application of lithium metal anodes is hindered by low Coulombic efficiency(CE),serious lithium dendrites and volume expansion.An MnO/Polypropylene(PP)composite separator was developed to regulate lithium metal deposition behaviors through in situ forming stable artificial solid electrolyte interface(SEI)passivating layers.The concentration of MnO in the cells can be maintained at a constant based on quite low solubility of MnO in the liquid electrolyte,and the dissolved MnO can be reduced to produce Li_(2)O and Mn metal nanoparticles,which can not only function as nucleating seeds of lithium metal deposits but also repair the broken SEI layer.Dendritic-free Li deposits can be obtained by simple separator coating.It can also improve the electrochemical performance of lithium metal batteries.And it is benefit for applications of Li metal anodes.
基金supported by the National Natural Science Foundation of China(21303186)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07020300)~~
文摘MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.
基金The financial supports from NSF(CMMI-1405355)and ACS Petroleum Research Fund(53780-DNI7)are gratefully acknowledged.
文摘With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study o?ers a simple but effective approach to fabricate hybrid morphological features in micro-scale.With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study offers a simple but effective approach to fabricate hybrid morphological features in micro-scale.
基金Project(20070410304) supported by Postdoctoral Foundation of ChinaProject(07JJ3105) supported by Hunan Provincial Natural Science Foundation of China
文摘Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrotherrnal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-repreeipitation process of HA.
基金the financial support from the National Natural Science Foundation of China(No.20973022 and No.11472048)the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)(Serial No.33600000-14-ZC0607-0006)
文摘Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.
基金financially supported by the National Natural Science Foundation of China (No.51104041)
文摘Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 3122020080)。
文摘It is commonly realized that polydispersity may significantly affect the surface modification properties of polymer brush systems. In light of this, we systematically study morphologies of bidisperse polyelectrolyte brush grafted onto a spherical nanocolloid in the presence of trivalent counterions using molecular dynamics simulations. Via varying polydispersity, grafting density, and solvent selectivity, the effects of electrostatic correlation and excluded volume are focused, and rich phase behaviors of binary mixed polyelectrolyte brush are predicted, including a variety of pinned-patch morphologies at low grafting density and micelle-like structures at high grafting density. To pinpoint the mechanism of surface structure formation, the shape factor of two species of polyelectrolyte chains and the pair correlation function between monomers from different polyelectrolyte ligands are analyzed carefully. Also, electrostatic correlations, manifested as the bridging through trivalent counterions, are examined by identifying four states of trivalent counterions. Our simulation results may be useful for designing smart stimuli-responsive materials based on mixed polyelectrolyte coated surfaces.
基金Funded by the National Natural Science Foundation of China(Nos.51408287,and 51668038)the Rolls Supported by Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R29)+2 种基金the Distinguished Young Scholars Fund of Gansu Province(1606RJDA318)the Natural Science Foundation of Gansu Province(1506RJZA064)the Excellent Program of Lanzhou Jiaotong University(201606)
文摘We investigated microstructure morphologies of three asphalts(SK, Karamay, and Esso) used in China using atomic force microscopy(AFM). The topography and phase contrast images were obtained. Topographic profile and three dimensional images were described. Roughnesses of microstructure were calculated. And the chemical compositions of asphalt were tested to explain the microstructural mechanism of the asphalt. The results show that the topography and phase image in atomic force microscopy are appropriate to evaluate the microstructure of the asphalt binder. There are significant differences in microstructural morphologies including bee-like structure, topographic profile, 3D image, and roughness for three asphalts in this study. There are three different phases in microstructure of asphalt binder. The oil source and chemical composition of asphalt, especially asphaltenes content have a great influence on the microstructure.
文摘Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C showed a monotonous increase of crystallization temperature compared to pure PPS. However, a further increase of curing time decreased the crystallization temperature. The change in the half-crystallization time (t1/2) was similar to the crystallization temperature. Thus, the cross-linking of PPS affected crystallization behaviors significantly. To a certain extent, crosslinks acted as nucleation agents, but excessive cross-linking hindered the crystallization. Morphologies observed by polarized optical microscopy suggested that thermal curing for as little as 1 day contributed to the spherulitic structure having a smaller size, that was not observed with pure PPS.
文摘The effect of annealing temperature on the formation of the PtSi phase. distribution of silicides and the surface morphologies of silicides films is investigated by XPS. AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-st with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.
基金supported by the National Natural Science Foundation of China under Grant Nos. 51727804 and 51672223supported by the “111” project under grant No. B08040
文摘Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within.
基金supported by the National Natural Science Foundation of China(Nos.50395103 and 50271057)the Shaanxi Provincial Natural Science Foundation of China(No.200304E104).
文摘Two new classes of growth morphologies, called doublons and seaweed, were simulated using a phase-field method. The evolution of doublon and seaweed morphologies was obtained in directional solidification. The influence of orientation and velocity on the growth morphology was investigated. It was indicated that doublons preferred growing with its crystallographic axis aligned with the heat flow direction. Seaweed, on the other hand, could be obtained by tilting the crystalline axis to 45°. Stable doublons could only exist in a range of velocity regime. Beyond this regime the patterns formed would be unstable. The simulation results agreed with the reported experimental results qualitatively.
基金supported by the National Natural Science Foundation of China(Nos.21476007,21673197,21621091)the National Key R&D Program of China(No.2018YFA0209500)+4 种基金the 111 Project(No.B16029)the Fundamental Research Funds for the Central Universities of China(No.20720190037)the Natural Science Foundation of Fujian Province of China(No.2018J06003)the Special Project of Strategic Emerging Industries from Fujian Development and Reform CommissionChemcloudcomputing of Beijing University of Chemical Technology。
文摘The physicochemical properties of surfaces have a great effect on the micro-morphologies of the crystal structures which are in contact with them.Understanding the interaction mechanism between the internal driving forces of the crystal and external inducing forces of the surfaces is the prerequisite of controlling and obtaining the desirable morphologies.In this work,the dynamic density functional theory was applied to construct the free energy functional expression of polyethylene(PE)lattice,and the micro-dynamic evolution processes of PE lattice morphology near the surfaces with different properties were observed to reveal the interaction mechanism at atomic scale.The results showed that the physical and chemical properties of the external surfaces synergistically affect the morphologies in both the defect shapes and the distribution of the defect regions.In the absence of the contact surfaces,driven by the oriented interactions among different CH2 groups,PE lattices gradually grow and form a defect-free structure.Conversely,the presence of contact surfaces leads to lattice defects in the interfacial regions,and PE lattice shows different self-healing abilities around different surfaces.
文摘Large catalogues of classified galaxy images have been useful in many studies of the universe in astronomy. There are too many objects to classify manually in the Sloan Digital Sky Survey, one of the premier data sources in astronomy. Therefore, efficient machine learning and classification algorithms are required to automate the classifying process. We propose to apply the Support Vector Machine (SVM) algorithm to classify galaxy morphologies and Krylov iterative methods to improve runtime of the classification. The accuracy of the classification is measured on various categories of galaxies from the survey. A three-class algorithm is presented that makes use of multiple SVMs. This algorithm is used to assign the categories of spiral, elliptical, and irregular galaxies. A selection of Krylov iterative solvers are compared based on their efficiency and accuracy of the resulting classification. The experimental results demonstrate that runtime can be significantly improved by utilizing Krylov iterative methods without impacting classification accuracy. The generalized minimal residual method (GMRES) is shown to be the most efficient solver to classify galaxy morphologies.
基金supported by the National Natural Science Foundation of China (No.51074019)
文摘A method for observing the three-dimensional morphologies of inclusions by deeply eroding a steel sample with a kind of organic solution composed of bromine water, acetone, and HCl (volume ratio, 45:45:10) was introduced. Four different kinds of inclusions in ultra low carbon steel were compared by metallographic observation and erosion observation. The results show that the three-dimensional morphologies of different kinds of inclusions could be observed clearly and simply after erosion. The method is useful for the observation and analysis of inclusions made by deep erosion. It also provides a new way to control and remove inclusions based on the true morphologies of inclusions.