According to Maxwell electromagnetic field theory and magnetic vector potential integral equation,a mathematical model of LMF(Level Magnetic Field)for EMBR(Electromagnetic brake)was proposed,and the reliable software ...According to Maxwell electromagnetic field theory and magnetic vector potential integral equation,a mathematical model of LMF(Level Magnetic Field)for EMBR(Electromagnetic brake)was proposed,and the reliable software for LMF calculation was developed.The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap.The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane.Furthermore,the effects of electromagnetic and structural parameters on magnetic flux density were discussed.The relationship between magnetic flux,electromagnetic parameters and structural parameters is obtained by dimensional analysis,simulation experiment and least square method.展开更多
Performance and energy consumption of high performance computing (HPC) interconnection networks have a great significance in the whole supercomputer, and building up HPC interconnection network simulation plat- form...Performance and energy consumption of high performance computing (HPC) interconnection networks have a great significance in the whole supercomputer, and building up HPC interconnection network simulation plat- form is very important for the research on HPC software and hardware technologies. To effectively evaluate the per- formance and energy consumption of HPC interconnection networks, this article designs and implements a detailed and clock-driven HPC interconnection network simulation plat- form, called HPC-NetSim. HPC-NetSim uses application- driven workloads and inherits the characteristics of the de- tailed and flexible cycle-accurate network simulator. Besides, it offers a large set of configurable network parameters in terms of topology and routing, and supports router's on/off states. We compare the simulated execution time with the real execution time of Tianhe-2 subsystem and the mean error is only 2.7%. In addition, we simulate the network behaviors with different network structures and low-power modes. The results are also consistent with the theoretical analyses.展开更多
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061510)
文摘According to Maxwell electromagnetic field theory and magnetic vector potential integral equation,a mathematical model of LMF(Level Magnetic Field)for EMBR(Electromagnetic brake)was proposed,and the reliable software for LMF calculation was developed.The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap.The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane.Furthermore,the effects of electromagnetic and structural parameters on magnetic flux density were discussed.The relationship between magnetic flux,electromagnetic parameters and structural parameters is obtained by dimensional analysis,simulation experiment and least square method.
文摘Performance and energy consumption of high performance computing (HPC) interconnection networks have a great significance in the whole supercomputer, and building up HPC interconnection network simulation plat- form is very important for the research on HPC software and hardware technologies. To effectively evaluate the per- formance and energy consumption of HPC interconnection networks, this article designs and implements a detailed and clock-driven HPC interconnection network simulation plat- form, called HPC-NetSim. HPC-NetSim uses application- driven workloads and inherits the characteristics of the de- tailed and flexible cycle-accurate network simulator. Besides, it offers a large set of configurable network parameters in terms of topology and routing, and supports router's on/off states. We compare the simulated execution time with the real execution time of Tianhe-2 subsystem and the mean error is only 2.7%. In addition, we simulate the network behaviors with different network structures and low-power modes. The results are also consistent with the theoretical analyses.