Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizin...Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizing the anode panel of an FPXS are time-consuming,expensive,and sometimes impractical.In this study,a FPXS was prepared using a ZnO nanowire cold cathode and a molybdenum film anode target.Monte Carlo(MC)simulations were utilized to optimize the anode panel and obtain the average fluence,average energy,and spatial distribution of the X-rays for the ZnO nanowire FPXS.The accuracy of the MC simulations was verified by comparing the measured and simulated energy spectra.Optimization of the anode target considers the material,thickness,and morphology,whereas optimization of the substrate focuses on the material and thickness.The results show that the difference between the positions of the K-shell peaks in the measured and simulated energy spectra is within 0.26 keV.At the acceleration voltages of 30 kV,60 kV,and 90 kV,the optimal thicknesses of the tungsten array anode were 0.65μm,2.45μm,and 5μm,respectively,while the molybdenum array anode has the optimal thicknesses of 1.45μm,5.25μm,and 24μm,respectively.The microsemi-ellipsoidal anode with a recessed design showed a 5%increase in the transmitted X-ray fluence compared with the film target.The sapphire substrate with a thickness of 0.78 mm exhibits a mechanical strength comparable to that of a glass substrate with a thickness of 3 mm,implying that the former can increase the average X-ray fluence by reducing the filtration of X-rays.The findings of this study provide valuable guidance for the fabrication and optimization of the ZnO nanowire FPXS.展开更多
The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnet...The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in d...We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in different planes to show the effect of every physical parameter.Based on the Monte Carlo simulations,which combine Metropolis algorithm and Ising model,we explore the thermal behavior of the total magnetization and susceptibility.We also present and discuss the influence of physical parameters such as the external magnetic field,the exchange coupling interactions between magnetic atoms,and the exchange magnetic field on the magnetization of the system.Moreover,the critical temperature of the system is about Tc=70 K,in agreement with the experimental value.Finally,the hysteresis loops of La2CuMnO6 are discussed.展开更多
Stereocomplex crystallization in asymmetric diblock copolymers was studied using dynamic Monte Carlo simulations,and the key factor dominating the formation of stereocomplex crystallites(SCs)was uncovered.The asymmetr...Stereocomplex crystallization in asymmetric diblock copolymers was studied using dynamic Monte Carlo simulations,and the key factor dominating the formation of stereocomplex crystallites(SCs)was uncovered.The asymmetric diblock copolymers with higher degree of asymmetry exhibit larger difference between volume fractions of beads of different blocks,and local miscibility between different kinds of beads is lower,leading to lower SC content.To minimize the interference from volume fraction of beads,the SC formation in blends of asymmetric diblock copolymers was also studied.For the cases where the volume fractions of beads of different blocks are the same,similar local miscibility between beads of different blocks and similar SC content was observed.These findings indicate that the volume fraction of beads of different blocks is a key factor controlling the SC formation in the asymmetric diblock copolymers.The SC content can be regulated by adjusting the difference between the contents of beads of different blocks in asymmetric diblock copolymers.展开更多
By three-dimensional kinetic Monte Carlo simulations, the effects of the temperature, the flux rate, the total coverage and the interruption time on the distribution and the number of self-assembled InAs/GaAs (001) ...By three-dimensional kinetic Monte Carlo simulations, the effects of the temperature, the flux rate, the total coverage and the interruption time on the distribution and the number of self-assembled InAs/GaAs (001) quantum dot (QD) islands are studied, which shows that a higher temperature, a lower flux rate and a longer growth time correspond to a better island distribution. The relations between the number of islands and the temperature and the flux rate are also successfully simulated. It is observed that for the total coverage lower than 0.5 ML, the number of islands decreases with the temperature increasing and other growth parameters fixed and the number of islands increases with the flux rate increasing when the deposition is lower than 0.6 ML and the other parameters are fixed.展开更多
Based on the Monte Carlo method,we examined the dynamic magnetic behaviors and magnetocaloric effect of a Kagome lattice subjected to the influence of time-dependent oscillating and time-independent magnetic fields.We...Based on the Monte Carlo method,we examined the dynamic magnetic behaviors and magnetocaloric effect of a Kagome lattice subjected to the influence of time-dependent oscillating and time-independent magnetic fields.We used the Ising model to describe the Kagome lattice and study the dynamic order parameters,blocking temperature,internal energy,and phase diagrams.The results revealed that exchange coupling increases the stability of the system and the bias field induces order;however,the time-dependent oscillating magnetic field induces disorder.In addition,the magnetocaloric properties,changes in magnetic entropy,and relative cooling power of the Kagome lattice were investigated.展开更多
The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc...The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cdl_xZnxS alloys. All formation energies are positive for WZ and ZB Cdl-xZnxS alloys, which means that the Cdl-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cdl_xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.sZn0.sS alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cdo.sZn0.sS alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams.展开更多
Dynamic Monte Carlo simulations of bulk lattice polymers driven through planar geometries with sequentially converging, parallel and diverging spaces between two neutrally repulsive solid plates are reported. The spat...Dynamic Monte Carlo simulations of bulk lattice polymers driven through planar geometries with sequentially converging, parallel and diverging spaces between two neutrally repulsive solid plates are reported. The spatial profiles of polymer velocity and deformation along the course of such a laminar extensional flow have been carefully analyzed. The results appear consistent with experimental observations in literature. In the entrance and exit regions, a linear dependence of chain extension upon the excess velocity has been observed. Moreover, an annexed shear flow and a molecular-dispersion effect are found. The results demonstrate a useful strategy of this approach to study polymer flows and bring new insights into the non-Newtonian-fluid behaviors of bulk polymers in capillary rheometers and micro-fluidic devices.展开更多
We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns o...We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns out to be a manybody problem in the presence of van der Waals(vd W)interaction among atoms in the upmost Rydberg state,so Monte Carlo(MC)calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius.It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension,unitary vd W shift,probe Rabi frequency,and coupling detuning.Through modulating these parameters,it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window.Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.展开更多
Monte Carlo simulation was applied to Assembly Success Bate (ASK) analyses. ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes, manufacturing tolerances and robot repea...Monte Carlo simulation was applied to Assembly Success Bate (ASK) analyses. ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes, manufacturing tolerances and robot repeatability into account. A statistic arithmetic expression was proposed and deduced in this paper, which offers an alternative method of estimating the accuracy of ASR, without having to repeat the simulations. This statistic method also helps to choose a suitable sample size, if error reduction is desired. Monte Carlo simulation results demonstrated the feasibility of the method.展开更多
The conformational and dynamic properties of polypropylene (PP) for both pure melts and blends with different chain tacticity were investigated by Monte Carlo simulation of isotactic (iPP), atactic (aPP) and syn...The conformational and dynamic properties of polypropylene (PP) for both pure melts and blends with different chain tacticity were investigated by Monte Carlo simulation of isotactic (iPP), atactic (aPP) and syndiotactic (sPP) polypropylenes. The simulation of coarse-grained PP models was performed on a high coordination lattice incorporating short- and long-range intramolecular interactions from the rotational isomeric state (RIS) model and Lennard-Jones (LJ) potential function of propane pairs, respectively. The dynamics of chains in binary PP/PP mixture were investigated with the composition of C150H302 with different chain taciticity. The diffusion rates of PP with different stereochemistry are generally in the order as: iPP 〉 aPP 〉〉 sPP. For PP/PP blends with 50:50 wt% binary mixtures, immiscibility was observed when sPP was introduced into the mixtures. The diffusion rate of iPP and aPP became slower after mixing, while sPP diffuses significantly faster in the binary mixtures. The mobility of PP chains depends on both intramolecular (molecular size and chain stiffness) and intermolecular (chain packing) interactions. The effect of intramolecular contribution is greater than that of intermolecular contribution for iPP and aPP chains in binary mixtures. For sPP chain, intermolecular interaction has greater influence on the dynamics than intramolecular contribution.展开更多
In the present study,we optimized the ceftriaxone dosing regimens based on pharmacokinetic/pharmacodynamic(PK/PD)principles using Monte Carlo simulation(MCS).Based on PK/PD theory,MCS was performed using Crystal Ball ...In the present study,we optimized the ceftriaxone dosing regimens based on pharmacokinetic/pharmacodynamic(PK/PD)principles using Monte Carlo simulation(MCS).Based on PK/PD theory,MCS was performed using Crystal Ball software combining PK and PD parameters with 10000 simulation runs to calculate the probability of target attainment(PTA)and cumulative fraction of response(CFR)for the seven clinically common dosing regimens of ceftriaxone(1 g qd,1.5 g qd,1 g bid,2 g qd,1 g tid,1.5 g bid,and 2 g bid).A%fT≥50 as the target value expected to achieve satisfactory clinical efficacy and a dosing regimen with an obtained CFR≥90%or the ability to achieve the highest PTA was used as a reasonable choice for empirical antimicrobial therapy,i.e.the clinically optimal regimen.All eight pathogenic bacteria had a CFR>90%when the dosing regimen was 2 g bid and 1 g tid,seven pathogenic bacteria had a CFR>90%when the dosing regimen was 1 g bid and 1.5 g bid,except for Pseudomonas aeruginosa,and all pathogenic bacteria had a CFR<90%when the dosing regimen was 1 g qd and 1.5 g qd.The dosing regimens of 2 g bid and 1 g tid were effective against all eight pathogenic bacteria infections,and 1 g bid and 1.5 g bid dosing regimens were effective against the other seven pathogenic bacteria except for Pseudomonas aeruginosa.展开更多
Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of th...Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of ^4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the grmmd state For systems consisted of 32, 64 and 128 ^4He atoms, respectively, We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.展开更多
Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model, in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals. We confirm in t...Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model, in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals. We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structure transition from the biaxial to the bent-director structure, which is similar to the result obtained using the Lebwoh-Lasher model. However, the step-like director's profile, characteristic for the biaxial structure, is spatially asymmetric in the film because the pair potential leads to K1 ≠ K3. We estimate the upper cell thickness to be 69 spin layers, in which the biaxial structure can be found.展开更多
Reduced nicotinamide adenine dinucleotide(NADH)plays a crucial role in many biochemical reactions in human metabolism.In this work,a flow-mediated skin fluorescence(FMSF)-postocclusion reactive hyperaemia(PORH)system ...Reduced nicotinamide adenine dinucleotide(NADH)plays a crucial role in many biochemical reactions in human metabolism.In this work,a flow-mediated skin fluorescence(FMSF)-postocclusion reactive hyperaemia(PORH)system was developed for noninvasive and in vivo measurement of NADH fluorescence and its real-time dynamical changes in human skin tissue.The real-time dynamical changes of NADH fluorescence were analyzed with the changes of skin blood flow measured by laser speckle contrast imaging(LSCI)experiments simultaneously with FMSFPORH measurements,which suggests that the dynamical changes of NADH fluorescence would be mainly correlated with the intrinsic changes of NADH level in the skin tissue.In addition,Monte Carlo simulations were applied to understand the impact of optical property changes on the dynamical changes of NADH fluorescence during the PORH process,which further supports that the dynamical changes of NADH fluorescence measured in our system would be intrinsic changes of NADH level in the skin tissue.展开更多
Next-generation nuclear reactor technologies,such as molten salt and fast reactors present complex analytical challenges that require advanced modeling and simulation tools.Yet,traditional workflows for Monte Carlo si...Next-generation nuclear reactor technologies,such as molten salt and fast reactors present complex analytical challenges that require advanced modeling and simulation tools.Yet,traditional workflows for Monte Carlo simulations like FLUKA are labor-intensive and error-prone,relying on manual input file generation and postprocessing.This limits scalability and efficiency.In this work,we present AutoFLUKA,a novel framework that leverages domain knowledge-embedded large language models(LLMs)and AI agents to automate the entire FLUKA simulation workflow from input file creation to execution management,and data analysis.AutoFLUKA also integrates Retrieval-Augmented Generation(RAG)and a web-based user-friendly graphical interface,enabling users to interact with the system in real time.Benchmarking against manual FLUKA simulations,AutoFLUKA demonstrated substantial improvements in resolving FLUKA error-related queries,particularly those arising from input file creation and execution.Traditionally,such issues are addressed through expert support on the FLUKA user forum,often resulting in significant delays.The resolution time for these queries was also reduced from several days to under one minute.Additionally,human-induced simulation errors were mitigated,and a high accuracy in key simulation metrics,such as neutron fluence and microdosimetric quantities,was achieved,with uncertainties below 0.001%for large sample sizes.The flexibility of AutoFLUKA was demonstrated through successful application to both general and specialized nuclear scenarios,and its design allows for straightforward extension to other simulation platforms.These results highlight AutoFLUKA’s potential to transform nuclear engineering analysis by enhancing productivity,reliability,and accessibility through AI-driven automation.展开更多
Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections h...Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections have the form ∝ L^(-ω),then we find ω=1.546(30) andω=1.509(14) as the best estimates.These are obtained from the finite-size scaling of the susceptibility data in the range of linear lattice sizes L ∈[128,2048] at the critical value of the Binder cumulant and from the scaling of the corresponding pseudocritical couplings within L∈[64,2048].These values agree with several other MC estimates at the assumption of the power-law corrections and are comparable with the known results of the ε-expansion.In addition,we have tested the consistency with the scaling corrections of the form ∝ L^(-4/3),∝L^(-4/3)In L and ∝L^(-4/3)/ln L,which might be expected from some considerations of the renormalization group and Coulomb gas model.The latter option is consistent with our MC data.Our MC results served as a basis for a critical reconsideration of some earlier theoretical conjectures and scaling assumptions.In particular,we have corrected and refined our previous analysis by grouping Feynman diagrams.The renewed analysis gives ω≈4-d-2η as some approximation for spatial dimensions d <4,or ω≈1.5 in two dimensions.展开更多
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta...Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms.展开更多
GPU-based Monte Carlo(MC)simulations are highly valued for their potential to improve both the computational efficiency and accuracy of radiotherapy.However,in proton therapy,these methods often simplify human tissues...GPU-based Monte Carlo(MC)simulations are highly valued for their potential to improve both the computational efficiency and accuracy of radiotherapy.However,in proton therapy,these methods often simplify human tissues as water for nuclear reactions,disregarding their true elemental composition and thereby potentially compromising calculation accuracy.Consequently,this study developed the program g MCAP(GPU-based proton MC Algorithm for Proton therapy),incorporating precise discrete interactions,and established a refined nuclear reaction model(REFINED)that considers the actual materials of the human body.Compared to the approximate water model(APPROX),the REFINED model demonstrated an improvement in calculation accuracy of 3%.In particular,in high-density tissue regions,the maximum dose deviation between the REFINED and APPROX models was up to 15%.In summary,the g MCAP program can efficiently simulate 1 million protons within 1 s while significantly enhancing dose calculation accuracy in high-density tissues,thus providing a more precise and efficient engine for proton radiotherapy dose calculations in clinical practice.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1204203 and 2022YFA1204201)Opening Fund of the State Key Laboratory of Optoelectronic Materials and Technologies at Sun Yat-sen University(No.OEMT-2023-KF-01)+1 种基金National Natural Science Foundation of China(Nos.61971463,82272131,and 82202960)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010537).
文摘Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizing the anode panel of an FPXS are time-consuming,expensive,and sometimes impractical.In this study,a FPXS was prepared using a ZnO nanowire cold cathode and a molybdenum film anode target.Monte Carlo(MC)simulations were utilized to optimize the anode panel and obtain the average fluence,average energy,and spatial distribution of the X-rays for the ZnO nanowire FPXS.The accuracy of the MC simulations was verified by comparing the measured and simulated energy spectra.Optimization of the anode target considers the material,thickness,and morphology,whereas optimization of the substrate focuses on the material and thickness.The results show that the difference between the positions of the K-shell peaks in the measured and simulated energy spectra is within 0.26 keV.At the acceleration voltages of 30 kV,60 kV,and 90 kV,the optimal thicknesses of the tungsten array anode were 0.65μm,2.45μm,and 5μm,respectively,while the molybdenum array anode has the optimal thicknesses of 1.45μm,5.25μm,and 24μm,respectively.The microsemi-ellipsoidal anode with a recessed design showed a 5%increase in the transmitted X-ray fluence compared with the film target.The sapphire substrate with a thickness of 0.78 mm exhibits a mechanical strength comparable to that of a glass substrate with a thickness of 3 mm,implying that the former can increase the average X-ray fluence by reducing the filtration of X-rays.The findings of this study provide valuable guidance for the fabrication and optimization of the ZnO nanowire FPXS.
文摘The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
文摘We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in different planes to show the effect of every physical parameter.Based on the Monte Carlo simulations,which combine Metropolis algorithm and Ising model,we explore the thermal behavior of the total magnetization and susceptibility.We also present and discuss the influence of physical parameters such as the external magnetic field,the exchange coupling interactions between magnetic atoms,and the exchange magnetic field on the magnetization of the system.Moreover,the critical temperature of the system is about Tc=70 K,in agreement with the experimental value.Finally,the hysteresis loops of La2CuMnO6 are discussed.
基金supported by the National Natural Science Foundation of China(No.21404050)the Research Foundation of Jiangsu University(No.14JDG059)+2 种基金Hao also thanks the supports from Postdoctoral Science Foundation of China(No.2019M651478)Natural Science Foundation of Jiangsu Province(No.BK20190866)Natural Science Foundation of the Higher Education Institutions of Jiangsu Provinee(No.18KJB150009).
文摘Stereocomplex crystallization in asymmetric diblock copolymers was studied using dynamic Monte Carlo simulations,and the key factor dominating the formation of stereocomplex crystallites(SCs)was uncovered.The asymmetric diblock copolymers with higher degree of asymmetry exhibit larger difference between volume fractions of beads of different blocks,and local miscibility between different kinds of beads is lower,leading to lower SC content.To minimize the interference from volume fraction of beads,the SC formation in blends of asymmetric diblock copolymers was also studied.For the cases where the volume fractions of beads of different blocks are the same,similar local miscibility between beads of different blocks and similar SC content was observed.These findings indicate that the volume fraction of beads of different blocks is a key factor controlling the SC formation in the asymmetric diblock copolymers.The SC content can be regulated by adjusting the difference between the contents of beads of different blocks in asymmetric diblock copolymers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60908028,60971068,and 10979065)the Fundamental Research Funds for the Central Universities,China(Grant No.2011RC0402)the Program for New Century Excellent Talents in University,China(Grant No.NCET-10-0261)
文摘By three-dimensional kinetic Monte Carlo simulations, the effects of the temperature, the flux rate, the total coverage and the interruption time on the distribution and the number of self-assembled InAs/GaAs (001) quantum dot (QD) islands are studied, which shows that a higher temperature, a lower flux rate and a longer growth time correspond to a better island distribution. The relations between the number of islands and the temperature and the flux rate are also successfully simulated. It is observed that for the total coverage lower than 0.5 ML, the number of islands decreases with the temperature increasing and other growth parameters fixed and the number of islands increases with the flux rate increasing when the deposition is lower than 0.6 ML and the other parameters are fixed.
基金supported by the Key project of the Education Department of Liaoning Province(Grant no.LJKZZ20220022)the Key R&D project of Liaoning Province of China(Grant no.2020JH2/10300079)。
文摘Based on the Monte Carlo method,we examined the dynamic magnetic behaviors and magnetocaloric effect of a Kagome lattice subjected to the influence of time-dependent oscillating and time-independent magnetic fields.We used the Ising model to describe the Kagome lattice and study the dynamic order parameters,blocking temperature,internal energy,and phase diagrams.The results revealed that exchange coupling increases the stability of the system and the bias field induces order;however,the time-dependent oscillating magnetic field induces disorder.In addition,the magnetocaloric properties,changes in magnetic entropy,and relative cooling power of the Kagome lattice were investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11164014 and 11364025)Gansu Science and Technology Pillar Program,China(Grant No.1204GKCA057)
文摘The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cdl_xZnxS alloys. All formation energies are positive for WZ and ZB Cdl-xZnxS alloys, which means that the Cdl-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cdl_xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.sZn0.sS alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cdo.sZn0.sS alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams.
基金financially supported by the National Natural Science Foundation of China(Nos.20825415 and 21274061)the National Basic Research Program of China(No.2011CB606100)
文摘Dynamic Monte Carlo simulations of bulk lattice polymers driven through planar geometries with sequentially converging, parallel and diverging spaces between two neutrally repulsive solid plates are reported. The spatial profiles of polymer velocity and deformation along the course of such a laminar extensional flow have been carefully analyzed. The results appear consistent with experimental observations in literature. In the entrance and exit regions, a linear dependence of chain extension upon the excess velocity has been observed. Moreover, an annexed shear flow and a molecular-dispersion effect are found. The results demonstrate a useful strategy of this approach to study polymer flows and bring new insights into the non-Newtonian-fluid behaviors of bulk polymers in capillary rheometers and micro-fluidic devices.
基金the National Natural Science Foundation of China(Grant No.12074061)。
文摘We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns out to be a manybody problem in the presence of van der Waals(vd W)interaction among atoms in the upmost Rydberg state,so Monte Carlo(MC)calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius.It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension,unitary vd W shift,probe Rabi frequency,and coupling detuning.Through modulating these parameters,it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window.Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.
文摘Monte Carlo simulation was applied to Assembly Success Bate (ASK) analyses. ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes, manufacturing tolerances and robot repeatability into account. A statistic arithmetic expression was proposed and deduced in this paper, which offers an alternative method of estimating the accuracy of ASR, without having to repeat the simulations. This statistic method also helps to choose a suitable sample size, if error reduction is desired. Monte Carlo simulation results demonstrated the feasibility of the method.
基金financially supported by the Strategic Scholarships Fellowship Research Network,Commission on Higher Education,Ministry of Education Thailand
文摘The conformational and dynamic properties of polypropylene (PP) for both pure melts and blends with different chain tacticity were investigated by Monte Carlo simulation of isotactic (iPP), atactic (aPP) and syndiotactic (sPP) polypropylenes. The simulation of coarse-grained PP models was performed on a high coordination lattice incorporating short- and long-range intramolecular interactions from the rotational isomeric state (RIS) model and Lennard-Jones (LJ) potential function of propane pairs, respectively. The dynamics of chains in binary PP/PP mixture were investigated with the composition of C150H302 with different chain taciticity. The diffusion rates of PP with different stereochemistry are generally in the order as: iPP 〉 aPP 〉〉 sPP. For PP/PP blends with 50:50 wt% binary mixtures, immiscibility was observed when sPP was introduced into the mixtures. The diffusion rate of iPP and aPP became slower after mixing, while sPP diffuses significantly faster in the binary mixtures. The mobility of PP chains depends on both intramolecular (molecular size and chain stiffness) and intermolecular (chain packing) interactions. The effect of intramolecular contribution is greater than that of intermolecular contribution for iPP and aPP chains in binary mixtures. For sPP chain, intermolecular interaction has greater influence on the dynamics than intramolecular contribution.
基金2019 Second Hospital of Hebei Medical University Pro ject(Grant No.2h2019042)。
文摘In the present study,we optimized the ceftriaxone dosing regimens based on pharmacokinetic/pharmacodynamic(PK/PD)principles using Monte Carlo simulation(MCS).Based on PK/PD theory,MCS was performed using Crystal Ball software combining PK and PD parameters with 10000 simulation runs to calculate the probability of target attainment(PTA)and cumulative fraction of response(CFR)for the seven clinically common dosing regimens of ceftriaxone(1 g qd,1.5 g qd,1 g bid,2 g qd,1 g tid,1.5 g bid,and 2 g bid).A%fT≥50 as the target value expected to achieve satisfactory clinical efficacy and a dosing regimen with an obtained CFR≥90%or the ability to achieve the highest PTA was used as a reasonable choice for empirical antimicrobial therapy,i.e.the clinically optimal regimen.All eight pathogenic bacteria had a CFR>90%when the dosing regimen was 2 g bid and 1 g tid,seven pathogenic bacteria had a CFR>90%when the dosing regimen was 1 g bid and 1.5 g bid,except for Pseudomonas aeruginosa,and all pathogenic bacteria had a CFR<90%when the dosing regimen was 1 g qd and 1.5 g qd.The dosing regimens of 2 g bid and 1 g tid were effective against all eight pathogenic bacteria infections,and 1 g bid and 1.5 g bid dosing regimens were effective against the other seven pathogenic bacteria except for Pseudomonas aeruginosa.
基金National Natural Science Foundation of China and the China Academy of Engineering Physics under Grant No.10676025(NSAF)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education
文摘Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of ^4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the grmmd state For systems consisted of 32, 64 and 128 ^4He atoms, respectively, We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 60736042 and 60878047)the Key Subject Construction Project of Hebei Province University
文摘Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model, in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals. We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structure transition from the biaxial to the bent-director structure, which is similar to the result obtained using the Lebwoh-Lasher model. However, the step-like director's profile, characteristic for the biaxial structure, is spatially asymmetric in the film because the pair potential leads to K1 ≠ K3. We estimate the upper cell thickness to be 69 spin layers, in which the biaxial structure can be found.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2020CFB380)the Educational Commission of Hubei Province of China(Grant No.Q20191506).
文摘Reduced nicotinamide adenine dinucleotide(NADH)plays a crucial role in many biochemical reactions in human metabolism.In this work,a flow-mediated skin fluorescence(FMSF)-postocclusion reactive hyperaemia(PORH)system was developed for noninvasive and in vivo measurement of NADH fluorescence and its real-time dynamical changes in human skin tissue.The real-time dynamical changes of NADH fluorescence were analyzed with the changes of skin blood flow measured by laser speckle contrast imaging(LSCI)experiments simultaneously with FMSFPORH measurements,which suggests that the dynamical changes of NADH fluorescence would be mainly correlated with the intrinsic changes of NADH level in the skin tissue.In addition,Monte Carlo simulations were applied to understand the impact of optical property changes on the dynamical changes of NADH fluorescence during the PORH process,which further supports that the dynamical changes of NADH fluorescence measured in our system would be intrinsic changes of NADH level in the skin tissue.
基金supported by the US Department of Energy Office of Nuclear Energy Distinguished Early Career Program under contract number DE-NE0009468support is provided by the Texas A&M Institute of Data Science(TAMIDS)Seed Program for AI,Computing,and Data Science。
文摘Next-generation nuclear reactor technologies,such as molten salt and fast reactors present complex analytical challenges that require advanced modeling and simulation tools.Yet,traditional workflows for Monte Carlo simulations like FLUKA are labor-intensive and error-prone,relying on manual input file generation and postprocessing.This limits scalability and efficiency.In this work,we present AutoFLUKA,a novel framework that leverages domain knowledge-embedded large language models(LLMs)and AI agents to automate the entire FLUKA simulation workflow from input file creation to execution management,and data analysis.AutoFLUKA also integrates Retrieval-Augmented Generation(RAG)and a web-based user-friendly graphical interface,enabling users to interact with the system in real time.Benchmarking against manual FLUKA simulations,AutoFLUKA demonstrated substantial improvements in resolving FLUKA error-related queries,particularly those arising from input file creation and execution.Traditionally,such issues are addressed through expert support on the FLUKA user forum,often resulting in significant delays.The resolution time for these queries was also reduced from several days to under one minute.Additionally,human-induced simulation errors were mitigated,and a high accuracy in key simulation metrics,such as neutron fluence and microdosimetric quantities,was achieved,with uncertainties below 0.001%for large sample sizes.The flexibility of AutoFLUKA was demonstrated through successful application to both general and specialized nuclear scenarios,and its design allows for straightforward extension to other simulation platforms.These results highlight AutoFLUKA’s potential to transform nuclear engineering analysis by enhancing productivity,reliability,and accessibility through AI-driven automation.
文摘Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections have the form ∝ L^(-ω),then we find ω=1.546(30) andω=1.509(14) as the best estimates.These are obtained from the finite-size scaling of the susceptibility data in the range of linear lattice sizes L ∈[128,2048] at the critical value of the Binder cumulant and from the scaling of the corresponding pseudocritical couplings within L∈[64,2048].These values agree with several other MC estimates at the assumption of the power-law corrections and are comparable with the known results of the ε-expansion.In addition,we have tested the consistency with the scaling corrections of the form ∝ L^(-4/3),∝L^(-4/3)In L and ∝L^(-4/3)/ln L,which might be expected from some considerations of the renormalization group and Coulomb gas model.The latter option is consistent with our MC data.Our MC results served as a basis for a critical reconsideration of some earlier theoretical conjectures and scaling assumptions.In particular,we have corrected and refined our previous analysis by grouping Feynman diagrams.The renewed analysis gives ω≈4-d-2η as some approximation for spatial dimensions d <4,or ω≈1.5 in two dimensions.
基金Postgraduate Innovation Top notch Talent Training Project of Hunan Province,Grant/Award Number:CX20220045Scientific Research Project of National University of Defense Technology,Grant/Award Number:22-ZZCX-07+2 种基金New Era Education Quality Project of Anhui Province,Grant/Award Number:2023cxcysj194National Natural Science Foundation of China,Grant/Award Numbers:62201597,62205372,1210456foundation of Hefei Comprehensive National Science Center,Grant/Award Number:KY23C502。
文摘Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms.
文摘GPU-based Monte Carlo(MC)simulations are highly valued for their potential to improve both the computational efficiency and accuracy of radiotherapy.However,in proton therapy,these methods often simplify human tissues as water for nuclear reactions,disregarding their true elemental composition and thereby potentially compromising calculation accuracy.Consequently,this study developed the program g MCAP(GPU-based proton MC Algorithm for Proton therapy),incorporating precise discrete interactions,and established a refined nuclear reaction model(REFINED)that considers the actual materials of the human body.Compared to the approximate water model(APPROX),the REFINED model demonstrated an improvement in calculation accuracy of 3%.In particular,in high-density tissue regions,the maximum dose deviation between the REFINED and APPROX models was up to 15%.In summary,the g MCAP program can efficiently simulate 1 million protons within 1 s while significantly enhancing dose calculation accuracy in high-density tissues,thus providing a more precise and efficient engine for proton radiotherapy dose calculations in clinical practice.