期刊文献+
共找到19,906篇文章
< 1 2 250 >
每页显示 20 50 100
应用Monte-Carlo模拟的MSD结构失效概率预测方法 被引量:1
1
作者 卢翔 宋挺 刘兆鹏 《机械设计与制造》 北大核心 2025年第7期354-359,共6页
针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝... 针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝板的剩余强度试验得到铆钉孔直径、铆钉孔间距和裂纹萌生位置对结构剩余强度均有一定影响。其次,通过对裂纹萌生寿命分布进行随机抽样生成初始裂纹并使用组合法结合Paris公式,实现多裂纹随机扩展的模拟;在试验数据基础上,对传统的Irwin塑性区连通准则进行改进,发现改进的Irwin塑性区连通准则在孔间距大于10mm时的误差大大降低,并结合净截面屈服准则以获得更好的剩余强度预测结果;将随机性的裂纹萌生和扩展过程与确定性的剩余强度预测方法相结合,建立基于Monte-Carlo方法的MSD结构的失效概率预测模型。最后,通过算例分析,该模型能够得到MSD结构的失效概率曲线,实现结构安全性评估。结果表明MSD结构的失效概率会在短时间内迅速增加,需要在裂纹萌生寿命附近进行限制。 展开更多
关键词 结构安全性评估 多部位损伤 剩余强度 montE-CARLO方法
在线阅读 下载PDF
基于Monte Carlo法的高温尾焰红外偏振辐射传输特性仿真
2
作者 周瑾 陈雪琦 +6 位作者 孔筱芳 曹姝清 梁彦 张硕 顾国华 陈钱 万敏杰 《物理学报》 北大核心 2025年第11期213-223,共11页
飞行器目标经过高温尾焰传输后的红外偏振辐射是红外探测设备对飞行器进行探测、识别、跟踪、告警的重要依据.在目标与背景红外辐射强度对比度低的情况下,将偏振特性差异结合到强度探测中可显著提高系统的探测与识别能力.本文基于Monte ... 飞行器目标经过高温尾焰传输后的红外偏振辐射是红外探测设备对飞行器进行探测、识别、跟踪、告警的重要依据.在目标与背景红外辐射强度对比度低的情况下,将偏振特性差异结合到强度探测中可显著提高系统的探测与识别能力.本文基于Monte Carlo法建立了高温尾焰红外偏振辐射传输特性仿真模型,根据尾焰空间气体组分的红外吸收系数谱,模拟光子在尾焰空间的多次散射过程,统计最终接收到的光子特性,分析了传输距离、尾焰温度和压强、气体组分浓度和探测波长对红外偏振光传输特性的影响.研究结果表明:本文研究方法和HITRAN库关于辐亮度透过率的计算结果误差基本保持在2%以内;随着距离增大,温度和压强对光波偏振辐射传输特性的影响更为显著.压强与透过率和偏振度呈负相关,温度的影响与气体的类型、温度范围等因素有关;辐亮度透过率和偏振度与尾焰空间气体的吸收系数和传输距离呈指数衰减关系;探测波长不同,光波的偏振辐射传输特性也存在差异. 展开更多
关键词 偏振辐射传输 高温尾焰 红外吸收光谱 monte Carlo法
在线阅读 下载PDF
苯乙烯-丙烯腈多分散体系的Monte Carlo模拟
3
作者 徐燕红 王为初 +2 位作者 丛梅 刘纪昌 赵基钢 《石油学报(石油加工)》 北大核心 2025年第6期1485-1498,共14页
基于苯乙烯-丙烯腈共聚物组成及分子量分布的均匀性对其最终共聚产物的性质及应用具有重要意义,建立二元共聚多链生长模型,采用Monte Carlo方法对苯乙烯-丙烯腈共聚多链合成过程进行模拟,分析了苯乙烯/丙烯腈质量比、引发剂摩尔分数对... 基于苯乙烯-丙烯腈共聚物组成及分子量分布的均匀性对其最终共聚产物的性质及应用具有重要意义,建立二元共聚多链生长模型,采用Monte Carlo方法对苯乙烯-丙烯腈共聚多链合成过程进行模拟,分析了苯乙烯/丙烯腈质量比、引发剂摩尔分数对共聚物组成和分子量分布的影响,并模拟了分批进料对改善共聚产物组成均匀性的作用。结果表明:苯乙烯/丙烯腈质量比越大,共聚产物的分子量分布均匀性越好,当苯乙烯/丙烯腈质量比为70/30和69/31时,产物组成均匀性表现最佳;引发剂摩尔分数越低,共聚产物的组成均匀性越好,但其分子量分布均匀性越差;通过分批进料可以调整体系反应物浓度,改善共聚产物组成和分子量分布均匀性,丙烯腈平均结合率的变化幅度在分批进料质量分数为3%时达到最小值(0.04%),共聚产物分子量分散度在分批进料质量分数为10%时达到最小值(1.189)。研究成果为改进共聚产物的组成与调控提供了理论依据和技术参考。 展开更多
关键词 聚合物多元醇 monte Carlo方法 二元共聚 多链模拟 分批进料
在线阅读 下载PDF
分批投料模式下非等活性抗体-抗原体系凝胶化区域的动态Monte Carlo模拟
4
作者 张子茹 李江涛 +1 位作者 顾芳 王海军 《高等学校化学学报》 北大核心 2025年第12期124-130,共7页
通过动态Monte Carlo模拟方法对兼具多批次反应和非等活性的抗体-抗原体系的凝胶化区域进行了研究.模拟不同投料次数和非等活性条件下的[Ag]_(3)-[Ab]_(2)体系,给出了临界反应程度与基团(抗原表位和抗体对位)摩尔比之间的变化关系.在此... 通过动态Monte Carlo模拟方法对兼具多批次反应和非等活性的抗体-抗原体系的凝胶化区域进行了研究.模拟不同投料次数和非等活性条件下的[Ag]_(3)-[Ab]_(2)体系,给出了临界反应程度与基团(抗原表位和抗体对位)摩尔比之间的变化关系.在此基础上,进一步计算了不同条件下相邻批次间的临界反应程度增量,从而明确了抗体-抗原体系的等价区为1~1.5.研究结果表明,当体系中大尺寸抗体-抗原复合物的生长占据主导地位时,等价区内各批次间的临界反应程度增量基本一致,因此相应各批次的凝集反应均可用于免疫应答的定量化分析.如果体系中以小尺寸复合物的生长为主,则各批次的凝集反应仅可进行定性或半定量的免疫测试.本文旨在揭示相关因素对体系凝胶化进程的调控机制,为精准研究抗体和抗原分子的生物活性、免疫性的定量评价及药物靶向治疗提供可借鉴的理论线索. 展开更多
关键词 抗体-抗原复合物 凝胶化区域 分批投料 非等活性 动态monte Carlo模拟
在线阅读 下载PDF
基于Monte-Carlo模拟对辽宁高粱镉、铬的健康风险评估
5
作者 彭天舒 吴限鑫 +3 位作者 李丽娜 林秋君 郭春景 王建忠 《现代食品科技》 北大核心 2025年第8期316-325,共10页
采用电感耦合等离子体质谱法(ICP-MS)测定辽宁省五个地区49份高粱样品中Cd、Cr含量,基于蒙特卡罗(Monte-Carlo)模拟评估高粱的非致癌风险指数(HQ)、综合非致癌风险指数(HI)、致癌风险指数(CR)和综合致癌风险指数(TCR),并对存在的健康风... 采用电感耦合等离子体质谱法(ICP-MS)测定辽宁省五个地区49份高粱样品中Cd、Cr含量,基于蒙特卡罗(Monte-Carlo)模拟评估高粱的非致癌风险指数(HQ)、综合非致癌风险指数(HI)、致癌风险指数(CR)和综合致癌风险指数(TCR),并对存在的健康风险进行消费引导。辽宁五个地区49份高粱样品中Cd、Cr含量范围分别为0.002~0.056 mg/kg、0.116~0.782 mg/kg;五个地区高粱对成人的HQ和HI均小于1,CR和TCR均小于1×10^(-4);五个地区高粱对儿童的HQ和HI均小于1,CR小于1×10^(-4),双塔、铁岭地区的TCR小于1×10^(-4),但沈河、建平、阜蒙地区的TCR分别为1.04×10^(-4)、1.16×10^(-4)、1.06×10^(-4),略大于1×10^(-4)。辽宁省五个地区高粱样品的整体污染情况较轻,Cd、Cr含量均符合国家标准;五个地区高粱对成人的HQ、HI、CR和TCR均处于安全水平;五个地区高粱对儿童的HQ、HI和CR均处于安全水平,只有沈河、建平、阜蒙三个地区存在较低的综合致癌风险,但当沈河、建平、阜蒙三个地区暴露频率分别控制在58、52、57 d/a以下时,可规避综合致癌风险。 展开更多
关键词 高粱 重金属 健康风险评估 montE-CARLO模拟
在线阅读 下载PDF
基于Monte Carlo模拟的高速列车转向架积冰脱落风险评估
6
作者 丁东 蔡业林 +2 位作者 马鑫宁 李杰 井国庆 《铁道科学与工程学报》 北大核心 2025年第10期4376-4387,共12页
寒区高速铁路列车在运行过程中,转向架区域附着的冰雪块易在气流扰动和温度变化等作用下脱落,可能撞击轨道道床及沿线设施,带来严重安全隐患。为定量评估列车转向架积冰脱落风险,提出一种基于Monte Carlo模拟的评估方法,通过分析列车覆... 寒区高速铁路列车在运行过程中,转向架区域附着的冰雪块易在气流扰动和温度变化等作用下脱落,可能撞击轨道道床及沿线设施,带来严重安全隐患。为定量评估列车转向架积冰脱落风险,提出一种基于Monte Carlo模拟的评估方法,通过分析列车覆冰受力机理,建立多因素层次指标体系,构建了综合考虑风载、振动、温度等多因素耦合作用下的脱落极限状态函数。基于哈大高铁四平段2021—2023年实测气象数据及相关文献实验数据,提取并拟合关键参数的统计特征,通过随机模拟分析各影响因素对脱冰风险的作用规律。研究结果表明:列车速度和冰雪块质量对脱冰可靠度影响最为显著,速度越高、质量越大,越易引发脱落;环境温度对冰雪块与车体之间黏结强度存在非线性调控作用,温度降低初期黏附力增强,但继续下降则因材料特性变化黏附力减弱;冰雪块黏附高度和面积影响复杂,存在局部扰动、剪切不均等现象,呈现非单调性。研究成果为寒区列车脱冰问题的机制识别与防护策略设计提供了定量基础和理论支撑。 展开更多
关键词 高速铁路 冰块脱落 monte Carlo模拟 风险评估 可靠度
在线阅读 下载PDF
基于Monte Carlo方法的三维邻近效应校正 被引量:1
7
作者 张誉腾 刘珠明 +5 位作者 梁锡辉 王铠尧 李全同 王其瑞 段飞 陈德龙 《机电工程技术》 2025年第2期54-59,共6页
针对电子束光刻中由于电子束散射引起的邻近效应带来的光刻图形精度变差问题,传统的二维邻近效应校正方法在处理精细和三维结构时未能有效应对,尤其是在图形的边缘和角点处。提出了一种基于剂量校正的新型的三维邻近效应校正方法。运用M... 针对电子束光刻中由于电子束散射引起的邻近效应带来的光刻图形精度变差问题,传统的二维邻近效应校正方法在处理精细和三维结构时未能有效应对,尤其是在图形的边缘和角点处。提出了一种基于剂量校正的新型的三维邻近效应校正方法。运用Monte Carlo方法和单元格去除显影法分别模拟三维能量密度分布和显影过程。对三维能量密度分布进行反卷积获得图形边缘的剂量分布,基于显影速率分布获得除图形边缘外的区域的剂量分布,探讨抗蚀剂三维形貌结构变化及其受剂量分布的影响,并对长100 nm、宽50 nm的矩形图案进行仿真,校正后所得图形X-Z和Y-Z剖面的侧壁宽度偏差分别为1.9%和1.2%。仿真结果表明,相对于未校正、采用二维邻近效应校正方法,基于所提三维邻近效应校正方法的图形X-Y剖面形貌精度得到改善,示例中图形角点处受邻近效应影响带来的面积偏差分别减小34.01%和25.21%,在提高电子束光刻图形精度方面有较好效果。 展开更多
关键词 电子束光刻 邻近效应 三维校正 剂量分布 monte Carlo模拟
在线阅读 下载PDF
Multi-function and generalized intelligent code-bench based on Monte Carlo method(MagicMC)for nuclear applications 被引量:1
8
作者 Zhen-Ping Chen Ai-Kou Sun +5 位作者 Ji-Chong Lei Cheng-Wei Liu Yi-Qing Zhang Chao Yang Jin-Sen Xie Tao Yu 《Nuclear Science and Techniques》 2025年第4期199-219,共21页
The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation ... The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation shielding design,and medical physics.However,with the rapid advancement of new nuclear energy systems,the Monte Carlo method faces challenges in efficiency,accuracy,and adaptability,limiting its effectiveness in meeting modern design requirements.Overcoming technical obstacles related to high-fidelity coupling,high-resolution computation,and intelligent design is essential for using the Monte Carlo method as a reliable tool in numerical analysis for these new nuclear energy systems.To address these challenges,the Nuclear Energy and Application Laboratory(NEAL)team at the University of South China developed a multifunctional and generalized intelligent code platform called MagicMC,based on the Monte Carlo particle transport method.MagicMC is a developing tool dedicated to nuclear applications,incorporating intelligent methodologies.It consists of two primary components:a basic unit and a functional unit.The basic unit,which functions similarly to a standard Monte Carlo particle transport code,includes seven modules:geometry,source,transport,database,tally,output,and auxiliary.The functional unit builds on the basic unit by adding functional modules to address complex and diverse applications in nuclear analysis.MagicMC introduces a dynamic Monte Carlo particle transport algorithm to address time-space particle transport problems within emerging nuclear energy systems and incorporates a CPU-GPU heterogeneous parallel framework to enable high-efficiency,high-resolution simulations for large-scale computational problems.Anticipating future trends in intelligent design,MagicMC integrates several advanced features,including CAD-based geometry modeling,global variance reduction methods,multi-objective shielding optimization,high-resolution activation analysis,multi-physics coupling,and radiation therapy.In this paper,various numerical benchmarks-spanning reactor transient simulations,material activation analysis,radiation shielding optimization,and medical dosimetry analysis-are presented to validate MagicMC.The numerical results demonstrate MagicMC's efficiency,accuracy,and reliability in these preliminary applications,underscoring its potential to support technological advancements in developing high-fidelity,high-resolution,and high-intelligence MC-based tools for advanced nuclear applications. 展开更多
关键词 monte Carlo Particle transport Intelligent design Nuclear application
在线阅读 下载PDF
环形ABC三嵌段共聚物在A嵌段选择性溶剂中自组装行为的Monte Carlo模拟
9
作者 黄华琛 徐广海 +1 位作者 韩媛媛 崔杰 《高等学校化学学报》 北大核心 2025年第5期157-166,共10页
采用MonteCarlo模拟方法研究了环形A_(4)B_(6)C_(6)三嵌段共聚物在A嵌段选择性溶剂中的自组装行为,并与线形A_(4)B_(6)C_(6)和A_(4)C_(6)B_(6)三嵌段共聚物的自组装行为进行对比.模拟结果表明,通过调节C嵌段的疏水性以及B嵌段与C嵌段之... 采用MonteCarlo模拟方法研究了环形A_(4)B_(6)C_(6)三嵌段共聚物在A嵌段选择性溶剂中的自组装行为,并与线形A_(4)B_(6)C_(6)和A_(4)C_(6)B_(6)三嵌段共聚物的自组装行为进行对比.模拟结果表明,通过调节C嵌段的疏水性以及B嵌段与C嵌段之间的疏水性差异,环形A_(4)B_(6)C_(6)三嵌段共聚物能够自组装形成节状蠕虫、节状片层、单室以及多室节状囊泡等多种形貌各异的聚合物胶束.由于环形嵌段共聚物特殊的拓扑结构,即使B嵌段与C嵌段之间存在疏水性差异,这些胶束的疏水核心均倾向于呈B嵌段和C嵌段交替排列的节状结构.相对于环形体系,线形A_(4)B_(6)C_(6)和A_(4)C_(6)B_(6)三嵌段共聚物在相同参数条件下的自组装行为较单一,体系中大多形成了球状胶束,而B嵌段和C嵌段在球状胶束疏水核心中的排布强烈依赖于嵌段共聚物的链结构.上述模拟结果有利于理解链结构对嵌段共聚物胶束形貌的影响机制,为制备具有特定疏水核心结构的聚合物胶束提供了理论依据. 展开更多
关键词 环形嵌段共聚物 自组装 拓扑结构 monte Carlo模拟
在线阅读 下载PDF
改进Monte Carlo与自适应响应面法对导管架的耦合算法
10
作者 邹佳辉 王琳 +2 位作者 丁果林 杨浩杰 蒋励 《船舶工程》 北大核心 2025年第S1期764-769,778,共7页
[目的]为解决深水导管架平台极端荷载下可靠度分析耗时长、精度差难题的目的,提出一种改进蒙特卡洛法(IMC)与自适应响应面法(ARSM)耦合方法。[方法]基于重要性采样(IS)和子集模拟(SS)改进传统Monte Carlo的方差收敛性,结合克里金(Krigi... [目的]为解决深水导管架平台极端荷载下可靠度分析耗时长、精度差难题的目的,提出一种改进蒙特卡洛法(IMC)与自适应响应面法(ARSM)耦合方法。[方法]基于重要性采样(IS)和子集模拟(SS)改进传统Monte Carlo的方差收敛性,结合克里金(Kriging)模型构建高精度代理模型,设计双向迭代耦合框架,通过动态样本分配策略优化计算效率,[结果]发现该算法在南海某深水导管架随机波浪-地震联合荷载下计算效率较传统方法提升82%,失效概率精度满足95%置信区间要求。[结论]研究成果验证了该算法在随机波浪-地震联合荷载下的优越性和可行性,可为海洋结构物的精细化可靠度评估提供了新方法。 展开更多
关键词 深水导管架 可靠度理论 改进monte Carlo 响应面法
原文传递
基于改进Monte-Carlo方法的SOTIF测试用例自动化生成方法 被引量:1
11
作者 赵瑞文 鄂璟仪 +1 位作者 郭伟 郑继翔 《汽车科技》 2025年第2期44-52,共9页
随着自动驾驶技术的快速发展,如何保证自动驾驶系统的安全性变得愈发重要,因此预期功能安全(Safety of The Intended Functionality, SOTIF)的概念应运而生,它主要是为了减少由于系统非预期的感知和决策错误而引起的危害。本文提出了一... 随着自动驾驶技术的快速发展,如何保证自动驾驶系统的安全性变得愈发重要,因此预期功能安全(Safety of The Intended Functionality, SOTIF)的概念应运而生,它主要是为了减少由于系统非预期的感知和决策错误而引起的危害。本文提出了一种依托自然驾驶数据的SOTIF自动化生成测试用例的方法。通过采集360°IBEO与环视摄像头数据,分析了4000多个前车切入场景,对关键变量进行参数化建模。采用改进的Monte-Carlo抽样技术,处理独立与非独立随机变量的联合分布,生成覆盖广泛场景的测试用例。实验结果表明该方法显著提升了测试用例生成效率,全面覆盖边角、危险及极端场景,解决了SOTIF测试中自动化生成测试用例的难题,为自动驾驶系统的预期功能安全评估提供了有效支持。 展开更多
关键词 monte-Carlo抽样 预期功能安全 测试用例 变量相关性分析 二维正态分布联合概率密度函数
在线阅读 下载PDF
Probabilistic Site Investigation Optimization of Gassy Soils Based on Conditional Random Field and Monte Carlo Simulation
12
作者 Shaolin Ding 《World Journal of Engineering and Technology》 2025年第1期1-11,共11页
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s... Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study. 展开更多
关键词 Gassy Soils Site Investigation UNCERTAINTY Conditional Random Field monte Carlo Simulation
在线阅读 下载PDF
Adaptive reverse Monte Carlo method and evaluation for infrared radiation characteristics of scramjet
13
作者 Xinyuan LIU Yongqiang SHI +3 位作者 Qingzhen YANG Huicheng YANG Xubo DU Xufei WANG 《Chinese Journal of Aeronautics》 2025年第8期187-203,共17页
Scramjet is the most promising propulsion system for Air-breathing Hypersonic Vehicle(AHV),and the Infrared(IR)radiation it emits is critical for early warning,detection,and identification of such weapons.This work pr... Scramjet is the most promising propulsion system for Air-breathing Hypersonic Vehicle(AHV),and the Infrared(IR)radiation it emits is critical for early warning,detection,and identification of such weapons.This work proposes an Adaptive Reverse Monte Carlo(ARMC)method and develops an analytical model for the IR radiation of scramjet considering gaseous kerosene and hydrogen fueled conditions.The evaluation studies show that at a global equivalence ratio of 0.8,the IR radiation from hydrogen-fueled plume is predominantly from H_(2)O and spectral peak is 1.53 kW·Sr^(-1)·μm^(-1)at the 2.7μm band,while the kerosene-fueled plume exhibits a spectral intensity approaching 7.0 kW·Sr^(-1)·μm^(-1)at the 4.3μm band.At the backward detection angle,both types of scramjets exhibit spectral peaks within the 1.3-1.4μm band,with intensities around10 kW·Sr^(-1)·μm^(-1).The integral radiation intensity of hydrogen-fueled scramjet is generally higher than kerosene-fueled scramjet,particularly in 1-3μm band.Meanwhile,at wide detection angles,the solid walls become the predominant radiation source.The radiation intensity is highest in1-3μm and weakest in 8-14μm band,with values of 21.5 kW·Sr^(-1)and 0.57 kW·Sr^(-1)at the backward detection angles,respectively.Significant variations in the radiation contributions from gases and solids are observed across different bands under the two fuel conditions,especially within 3-5μm band.This research provides valuable insights into the IR radiation characteristics of scramjets,which can aid in the development of IR detection systems for AHV. 展开更多
关键词 HYPERSONIC Infrared radiation monte Carlo methods SCRAMJET Statistical variance
原文传递
Modeling segregated solutes in plastically deformed alloys using coupled molecular dynamics-Monte Carlo simulations
14
作者 Hariprasath Ganesan Godehard Sutmann 《Journal of Materials Science & Technology》 2025年第10期98-108,共11页
A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system ... A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system at atomic resolution remains challenging.The objective is to efficiently model and predict a phys-ically informed segregated solute distribution rather than simulating a series of diffusion kinetics.To ad-dress this objective,we coupled molecular dynamics(MD)and Monte Carlo(MC)methods using a novel method based on virtual atoms technique.We applied our MD-MC coupling approach to model off-lattice carbon(C)solute segregation in nanoindented Fe-C samples containing complex dislocation networks.Our coupling framework yielded the final configuration through efficient parallelization and localized en-ergy computations,showing C Cottrell atmospheres near dislocations.Different initial C concentrations resulted in a consistent trend of C atoms migrating from less crystalline distortion to high crystalline distortion regions.Besides unraveling the strong spatial correlation between local C concentration and defect regions,our results revealed two crucial aspects of solute segregation preferences:(1)defect ener-getics hierarchy and(2)tensile strain fields near dislocations.The proposed approach is generic and can be applied to other material systems as well. 展开更多
关键词 Molecular dynamics monte Carlo Virtual atoms Solute segregation Cottrell atmosphere Off-lattice
原文传递
Optimizations and applications in large-scale scenes of Monte Carlo geometry conversion code CMGC
15
作者 Xin Wang Ling-Yu Zhang +4 位作者 Xue-Ming Shi Zhen Wu Jun-Li Li Gui-Ming Qin Yuan-Guang Fu 《Nuclear Science and Techniques》 2025年第4期220-232,共13页
In response to the demand for rapid geometric modeling in Monte Carlo radiation transportation calculations for large-scale and complex geometric scenes,functional improvements,and algorithm optimizations were perform... In response to the demand for rapid geometric modeling in Monte Carlo radiation transportation calculations for large-scale and complex geometric scenes,functional improvements,and algorithm optimizations were performed using CAD-to-Monte Carlo geometry conversion(CMGC)code.Boundary representation(BRep)to constructive solid geometry(CSG)conversion and visual CSG modeling were combined to address the problem of non-convertible geometries such as spline surfaces.The splitting surface assessment method in BRep-to-CSG conversion was optimized to reduce the number of Boolean operations using an Open Cascade.This,in turn,reduced the probability of CMGC conversion failure.The auxiliary surface generation algorithm was optimized to prevent the generation of redundant auxiliary surfaces that cause an excessive decomposition of CAD geometry solids.These optimizations enhanced the usability and stability of the CMGC model conversion.CMGC was applied successfully to the JMCT transportation calculations for the conceptual designs of five China Fusion Engineering Test Reactor(CFETR)blankets.The rapid replacement of different blanket schemes was achieved based on the baseline CFETR model.The geometric solid number of blankets ranged from hundreds to tens of thousands.The correctness of the converted CFETR models using CMGC was verified through comparisons with the MCNP calculation results.The CMGC supported radiation field evaluations for a large urban scene and detailed ship scene.This enabled the rapid conversion of CAD models with thousands of geometric solids into Monte Carlo CSG models.An analysis of the JMCT transportation simulation results further demonstrated the accuracy and effectiveness of the CMGC. 展开更多
关键词 monte Carlo CAD BRep to CSG CMGC
在线阅读 下载PDF
A new model for determining the effective permeability of tight reservoirs based on Fractal-Monte Carlo method
16
作者 You Zhou Song-Tao Wu +2 位作者 Ru-Kai Zhu Xiao-Hua Jiang Gan-Lin Hua 《Petroleum Science》 2025年第8期3101-3118,共18页
In contrast to conventional reservoirs,tight formations have more complex pore structures and significant boundary layer effect,making it difficult to determine the effective permeability.To address this,this paper fi... In contrast to conventional reservoirs,tight formations have more complex pore structures and significant boundary layer effect,making it difficult to determine the effective permeability.To address this,this paper first proposes a semi-empirical model for calculating boundary layer thickness based on dimensional analysis,using published experimental data on microcapillary flow.Furthermore,considering the non-uniform distribution of fluid viscosity in the flow channels of tight reservoirs,a theoretical model for boundary layer thickness is established based on fractal theory,and permeability predictions are conducted through Monte Carlo simulations.Finally,sensitivity analyses of various influencing parameters are performed.The results show that,compared to other fractal-based analytical models,the proposed permeability probabilistic model integrates parameters affecting fluid flow with random numbers,reflecting both the fractal and randomness characteristics of capillary size distribution.The computational results exhibit the highest consistency with experimental data.Among the factors affecting the boundary layer,in addition to certain conventional physical and mechanical parameters,different microstructure parameters significantly influence the boundary layer as well.A higher tortuosity fractal dimension results in a thicker boundary layer,while increases in pore fractal dimension,porosity,and maximum capillary size help mitigate the boundary layer effect.It is also observed that the permeability of large pores exhibits greater sensitivity to changes in various influencing parameters.Considering micro-scale flow effects,the proposed model enhances the understanding of the physical mechanisms of fluid transport in dense porous media. 展开更多
关键词 Tight reservoirs Boundary layer Permeability model Fractal theory monte Carlo
原文传递
gMCAP:a GPU-based Monte Carlo proton transport program for high-density tissues with precise nuclear reaction models
17
作者 Xi-Yu Luo Liang Sun +4 位作者 Zhen Wu Rui Qiu Shou-Ping Xu Hui Zhang Jun-Li Li 《Nuclear Science and Techniques》 2025年第5期192-205,共14页
GPU-based Monte Carlo(MC)simulations are highly valued for their potential to improve both the computational efficiency and accuracy of radiotherapy.However,in proton therapy,these methods often simplify human tissues... GPU-based Monte Carlo(MC)simulations are highly valued for their potential to improve both the computational efficiency and accuracy of radiotherapy.However,in proton therapy,these methods often simplify human tissues as water for nuclear reactions,disregarding their true elemental composition and thereby potentially compromising calculation accuracy.Consequently,this study developed the program g MCAP(GPU-based proton MC Algorithm for Proton therapy),incorporating precise discrete interactions,and established a refined nuclear reaction model(REFINED)that considers the actual materials of the human body.Compared to the approximate water model(APPROX),the REFINED model demonstrated an improvement in calculation accuracy of 3%.In particular,in high-density tissue regions,the maximum dose deviation between the REFINED and APPROX models was up to 15%.In summary,the g MCAP program can efficiently simulate 1 million protons within 1 s while significantly enhancing dose calculation accuracy in high-density tissues,thus providing a more precise and efficient engine for proton radiotherapy dose calculations in clinical practice. 展开更多
关键词 monte Carlo simulation Proton therapy Dose calculation GPU GEANT4
暂未订购
Multi-sensor missile-borne LiDAR point cloud data augmentation based on Monte Carlo distortion simulation
18
作者 Luda Zhao Yihua Hu +4 位作者 Fei Han Zhenglei Dou Shanshan Li Yan Zhang Qilong Wu 《CAAI Transactions on Intelligence Technology》 2025年第1期300-316,共17页
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta... Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms. 展开更多
关键词 data augmentation LIDAR missile-borne imaging monte Carlo simulation point cloud
在线阅读 下载PDF
Comparison of the Statistical Power of Siegel-Tukey and Savage Tests: A Study with Monte Carlo Simulation
19
作者 Elnur Hasan Mikail HakanÇora Sahib Ramazanov 《Economics World》 2025年第2期95-105,共11页
This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenari... This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes. 展开更多
关键词 nonparametric test statistical power Siegel-Tukey test Savage test monte Carlo simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部