Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduc...Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#y / to be a monoidal Hom-bialgebra is given. In addition, let (H, a) be a Hom-σ- Hopf algebra with Hom-〇 --antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra B#y H with the antipode S defined by S(b×h)=(1B×SH(a^-1)b(-1)))(SB(b(0))×1H to be a monoidal Hom-Hopf algebra is derived.展开更多
Let (H, α) be a monoidal Hom-Hopf algebra. In this paper, we will study the category of Hom-Yetter-Drinfeld modules. First, we show that the category of left-left Hom-Yetter-Drinfeld modules H^H HYD is isomorphic t...Let (H, α) be a monoidal Hom-Hopf algebra. In this paper, we will study the category of Hom-Yetter-Drinfeld modules. First, we show that the category of left-left Hom-Yetter-Drinfeld modules H^H HYD is isomorphic to the center of the category of left (H, α)-Hom-modules. Also, by the center construction, we get that the categories of left-left, left-right, right-left, and right-right Hom-Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Second, we prove that the category of finitely generated projective left-left Hom-Yetter-Drinfeld modules has left and right duality.展开更多
In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain ...In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.展开更多
Let A and H be Hopf algebra, T-smash product AT H generalizes twisted smash product A * H. This paper shows a necessary and sufficient condition for T-smash product moduie category AT HM to be braided monoidal category.
Let(C, α) and(H, β) be Hom-bialgebras and ω : C H → H C a linear map.We introduce the concept of a Hom-ω-crossed coproduct(Cω σ H, γ) and we give necessary and sufficient conditions for the new object ...Let(C, α) and(H, β) be Hom-bialgebras and ω : C H → H C a linear map.We introduce the concept of a Hom-ω-crossed coproduct(Cω σ H, γ) and we give necessary and sufficient conditions for the new object to be a Hom-Hopf algebra.展开更多
Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra i...Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules.展开更多
In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine qua...In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.展开更多
The main work of this article is to give a nontrivial method to construct pointed semilattice graded weak Hopf algebra from a Clifford monoid S =[Y; Gα. φα,β]by Ore-extensions, and to obtain a co-Frobenius semilat...The main work of this article is to give a nontrivial method to construct pointed semilattice graded weak Hopf algebra from a Clifford monoid S =[Y; Gα. φα,β]by Ore-extensions, and to obtain a co-Frobenius semilattice graded weak Hopf algebra H(S, n, c, x, a, b) through factoring At by a semilattice graded weak Hopf ideal.展开更多
基金The National Natural Science Foundation of China(No.11371088,10871042,11571173)the Fundamental Research Funds for the Central Universities(No.KYLX15_0105)
文摘Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#y / to be a monoidal Hom-bialgebra is given. In addition, let (H, a) be a Hom-σ- Hopf algebra with Hom-〇 --antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra B#y H with the antipode S defined by S(b×h)=(1B×SH(a^-1)b(-1)))(SB(b(0))×1H to be a monoidal Hom-Hopf algebra is derived.
基金Acknowledgements The authors sincerely thank the referees for their valuable suggestions and comments on this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11601486, 61272007. 11401534).
文摘Let (H, α) be a monoidal Hom-Hopf algebra. In this paper, we will study the category of Hom-Yetter-Drinfeld modules. First, we show that the category of left-left Hom-Yetter-Drinfeld modules H^H HYD is isomorphic to the center of the category of left (H, α)-Hom-modules. Also, by the center construction, we get that the categories of left-left, left-right, right-left, and right-right Hom-Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Second, we prove that the category of finitely generated projective left-left Hom-Yetter-Drinfeld modules has left and right duality.
基金Supported by the National Natural Science Foundation of China(11047030, 11171055) Supported by the Grant from China Scholarship Counci1(2011841026)
文摘In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.
文摘Let A and H be Hopf algebra, T-smash product AT H generalizes twisted smash product A * H. This paper shows a necessary and sufficient condition for T-smash product moduie category AT HM to be braided monoidal category.
文摘Let(C, α) and(H, β) be Hom-bialgebras and ω : C H → H C a linear map.We introduce the concept of a Hom-ω-crossed coproduct(Cω σ H, γ) and we give necessary and sufficient conditions for the new object to be a Hom-Hopf algebra.
基金The National Natural Science Foundation of China(No.10871042)
文摘Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules.
基金Project supported by the National Natural Science Foundation of China(Grant No.11475178)
文摘In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.
基金supported by the National Natural Science Foundation of China(11271318,11171296,and J1210038)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20110101110010)the Zhejiang Provincial Natural Science Foundation of China(LZ13A010001)
文摘The main work of this article is to give a nontrivial method to construct pointed semilattice graded weak Hopf algebra from a Clifford monoid S =[Y; Gα. φα,β]by Ore-extensions, and to obtain a co-Frobenius semilattice graded weak Hopf algebra H(S, n, c, x, a, b) through factoring At by a semilattice graded weak Hopf ideal.