期刊文献+
共找到209,757篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique 被引量:1
1
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
在线阅读 下载PDF
Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy conditions 被引量:2
2
作者 Lintao Han Hengyi Lv +3 位作者 Chengshan Han Yuchen Zhao Qing Han Hailong Liu 《Journal of Environmental Sciences》 2025年第6期203-218,共16页
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we... Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability. 展开更多
关键词 Remote sensing Image dehazing Environmental monitoring Neural network INTERPRETABILITY
原文传递
Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand 被引量:1
3
作者 ZHANG Jing LI Xuejian +2 位作者 LI Gang YUAN Ye YANG Dong 《Journal of Southeast University(English Edition)》 2025年第1期44-50,共7页
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ... To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring. 展开更多
关键词 steel strand ultrasonic guided wave plateau frequency mode separation stress monitoring
在线阅读 下载PDF
Anomaly monitoring and early warning of electric moped charging device with infrared image 被引量:1
4
作者 LI Jiamin HAN Bo JIANG Mingshun 《Optoelectronics Letters》 2025年第3期136-141,共6页
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor... Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image. 展开更多
关键词 detection methods divide image anomaly monitoring temperature detection median filtering algorithm infrared image processing image segmentation algorithm electric moped charging devicessuch
原文传递
Characterizing large deformation of soft rock tunnel using microseismic monitoring and numerical simulation 被引量:1
5
作者 Yuepeng Sun Nuwen Xu +4 位作者 Peiwei Xiao Zhiqiang Sun Huailiang Li Jun Liu Biao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期309-322,共14页
Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the... Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel.An in situ microseismic(MS)monitoring system is established in the plateau soft tock tunnel.This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation,which agree well with field convergence deformation results.The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results.The results demonstrate that:(1)Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section.As excavation continues,the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding;(2)Tunnel excavation and long-term deformation can induce tensile shear action on the rock mass,vertical tension fractures(account for 45%)exist in deep rockmass,which play a crucial role in controlling the macroscopic failure of surrounding rock;and(3)Based on the radiated MS energy,a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock.The model depicted varying degrees of damage,and three high damage zones were identified.Generally,the depth of high damage zone ranged from 4 m to 12 m.This study may be a valuable reference for the warning and controlling of large deformations in similar projects. 展开更多
关键词 Soft rock tunnel MS monitoring Progressive failure characteristic Excavation damage zone Failure mechanism
在线阅读 下载PDF
Ultrasensitive electrospinning fibrous strain sensor with synergistic conductive network for human motion monitoring and human-computer interaction 被引量:1
6
作者 Jingwen Wang Shun Liu +6 位作者 Zhaoyang Chen Taoyu Shen Yalong Wang Rui Yin Hu Liu Chuntai Liu Changyu Shen 《Journal of Materials Science & Technology》 2025年第10期213-222,共10页
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ... With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases. 展开更多
关键词 Flexible strain sensors Synergistic conductive network Electrospinning fibrous membrane Motion monitoring Human-machine interface
原文传递
From Static and Dynamic Perspectives:A Survey on Historical Data Benchmarks of Control Performance Monitoring 被引量:1
7
作者 Pengyu Song Jie Wang +1 位作者 Chunhui Zhao Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期300-316,共17页
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be... In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research. 展开更多
关键词 Control performance monitoring(CPM) datadriven method historical data benchmark(HIS) industrial process performance index static and dynamic analysis.
在线阅读 下载PDF
Role of disturbance coefficient in monitoring and treatment of cerebral edema in patients with cerebral hemorrhage 被引量:1
8
作者 Wen-Wen Gao Xiao-Bing Jiang +9 位作者 Peng Chen Liang Zhang Lei Yang Zhi-Hai Yuan Yao Wei Xiao-Qiang Li Xiao-Lu Tang Feng-Lu Wang Hao Wu Hai-Kang Zhao 《World Journal of Clinical Cases》 2025年第14期16-24,共9页
BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral... BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral cerebral edema,but cannot realize quantification.When patients have symptoms of diffuse cerebral edema or high cranial pressure,CT or MRI often suggests that cerebral edema is lagging and cannot be dynamically monitored in real time.Intracranial pressure monitoring is the gold standard,but it is an invasive operation with high cost and complications.For clinical purposes,the ideal cerebral edema monitoring should be non-invasive,real-time,bedside,and continuous dynamic monitoring.The dis-turbance coefficient(DC)was used in this study to dynamically monitor the occu-rrence,development,and evolution of cerebral edema in patients with cerebral hemorrhage in real time,and review head CT or MRI to evaluate the development of the disease and guide further treatment,so as to improve the prognosis of patients with cerebral hemorrhage.AIM To offer a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.METHODS A total of 160 patients with hypertensive cerebral hemorrhage admitted to the Department of Neurosurgery,Second Affiliated Hospital of Xi’an Medical University from September 2018 to September 2019 were recruited.The patients were randomly divided into a control group(n=80)and an experimental group(n=80).Patients in the control group received conventional empirical treatment,while those in the experimental group were treated with mannitol dehydration under the guidance of DC.Subsequently,we compared the two groups with regards to the total dosage of mannitol,the total course of treatment,the incidence of complications,and prognosis.RESULTS The mean daily consumption of mannitol,the total course of treatment,and the mean hospitalization days were 362.7±117.7 mL,14.8±5.2 days,and 29.4±7.9 in the control group and 283.1±93.6 mL,11.8±4.2 days,and 23.9±8.3 in the experimental group(P<0.05).In the control group,there were 20 patients with pulmonary infection(25%),30 with electrolyte disturbance(37.5%),20 with renal impairment(25%),and 16 with stress ulcer(20%).In the experimental group,pulmonary infection occurred in 18 patients(22.5%),electrolyte disturbance in 6(7.5%),renal impairment in 2(2.5%),and stress ulcers in 15(18.8%)(P<0.05).According to the Glasgow coma scale score 6 months after discharge,the prognosis of the control group was good in 20 patients(25%),fair in 26(32.5%),and poor in 34(42.5%);the prognosis of the experimental group was good in 32(40%),fair in 36(45%),and poor in 12(15%)(P<0.05).CONCLUSION Using DC for non-invasive dynamic monitoring of cerebral edema demonstrates considerable clinical potential.It reduces mannitol dosage,treatment duration,complication rates,and hospital stays,ultimately lowering hospital-ization costs.Additionally,it improves overall patient prognosis,offering a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment. 展开更多
关键词 Noninvasive cerebral edema monitor Disturbance coefficient HYPERTENSION Cerebral hemorrhage Cerebral edema MANNITOL
暂未订购
A Fully‑Printed Wearable Bandage‑Based Electrochemical Sensor with pH Correction for Wound Infection Monitoring
9
作者 Kanyawee Kaewpradub Kornautchaya Veenuttranon +2 位作者 Husanai Jantapaso Pimonsri Mittraparp‑arthorn Itthipon Jeerapan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期355-375,共21页
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ... Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes. 展开更多
关键词 PYOCYANIN BANDAGES Wound monitoring Biosensor Wearable device
在线阅读 下载PDF
Low‑Temperature Fabrication of Stable Black‑Phase CsPbI_(3) Perovskite Flexible Photodetectors Toward Wearable Health Monitoring
10
作者 Yingjie Zhao Yicheng Sun +8 位作者 Chaoxin Pei Xing Yin Xinyi Li Yi Hao Mengru Zhang Meng Yuan Jinglin Zhou Yu Chen Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期232-245,共14页
Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityh... Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices. 展开更多
关键词 In situ hydrolyzation Low-temperature processing All-inorganic perovskite Flexible photodetectors Health monitoring
在线阅读 下载PDF
Monitoring and Data Analysis of Mooring Tension for Floating Platforms
11
作者 YANG Hua−wei ZHENG Qing−xin +2 位作者 XU Chun YANG Qi−fan JIANG Zhen−tao 《船舶力学》 北大核心 2025年第6期941-951,共11页
Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data... Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest. 展开更多
关键词 floating platform mooring tension tension monitoring sensor wave frequency force drift force
在线阅读 下载PDF
Study on Affecting Factors of the Consistency of Printed Electrodes Based on an Online Pressure Monitoring System
12
作者 CAI Zi-mu GU Jin-tao +2 位作者 CHENG Guang-kai XU Guang-yi LI Yan 《印刷与数字媒体技术研究》 北大核心 2025年第2期91-97,共7页
In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu... In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance. 展开更多
关键词 Printing pressure Consistency of printed electrodes Screen printing Online monitoring
在线阅读 下载PDF
Laser Diode-in-Capacitors for High-Voltage Line Non-Contact Monitoring:Voltage,Electromagnetic Interference and Vibration Monitoring
13
作者 Pengpeng Wang Wei Huang +8 位作者 Hao Su Junlong Li Biao Xie Jiawen Qiu Baoran Shi Yongai Zhang Xiongtu Zhou Tailiang Guo Chaoxing Wu 《High Voltage》 2025年第5期1302-1313,共12页
Power grid is an indispensable infrastructure in modern society,in order to ensure the normal operation of the grid,online non-contact monitoring of high-voltage lines is essential.In this work,a‘capacitor-laser diod... Power grid is an indispensable infrastructure in modern society,in order to ensure the normal operation of the grid,online non-contact monitoring of high-voltage lines is essential.In this work,a‘capacitor-laser diode(LD)-capacitor’structure,namely,laser diode in capacitors(LDIC),that can be used for non-contact monitoring of high-voltage(HV)line status by directly transferring the status information of the HV line to modulated laser pulses is proposed.The proposed LDIC can accurately extract the real-time voltage changes on the HV line with an accuracy level of 0.959%.Because the LDIC is sensitive to high-frequency electromagnetic field,the LDIC is successfully utilised to detect the external electromagnetic interference(EMI)to obtain the intensity and frequency of the external EMI.Additionally,the amplitude and frequency of the HV line vibration can be accurately monitored by using the LDIC.For the third-order curve fitting of vibration amplitude,the average error is only 0.00867,and the average error of linear fitting of vibration frequency is as low as 0.00655.This work provides a novel approach for the online monitoring of the HV line status and a new supplement for the development of power grid technology. 展开更多
关键词 electromagnetic interference non contact monitoring vibration monitoring high voltage line monitoring power grid directly transferring status information capacitor laser diode diode capacitors ldic
在线阅读 下载PDF
Sustainable Emergency Rescue Products: Design and Monitoring Techniques for Preventing and Mitigating Construction Failures in Unforeseen Circumstances
14
作者 Xiaobo Jiang Hongchao Zheng 《Structural Durability & Health Monitoring》 2025年第6期1695-1716,共22页
Construction failures caused by unforeseen circumstances, such as natural disasters, environmental degradation, and structural weaknesses, present significant challenges in achieving durability, safety, and sustainabi... Construction failures caused by unforeseen circumstances, such as natural disasters, environmental degradation, and structural weaknesses, present significant challenges in achieving durability, safety, and sustainability. This research addresses these challenges through the development of advanced emergency rescue systems incorporating wood-derived nanomaterials and IoT-enabled Structural Health Monitoring (SHM) technologies. The use of nanocellulose which demonstrates outstanding mechanical capabilities and biodegradability alongside high resilience allowed developers to design modular rescue systems that function effectively even under challenging conditions while providing real-time failure protection. Experimental data from testing showed that the replacement system strengthened load-bearing limits by 20% while enhancing impact tolerance by 30% and decreasing lifecycle carbon footprints by 60% against conventional methods. FEA results alongside dynamic simulations established that the system maintains its strength across seismic events and thermal variations and environmental conditions. SHM systems that leverage the Internet of Things Platform revealed 95% accuracy rates in detecting anomalies while improving response speed by 30% for predictive maintenance operations. The innovative solutions support the special issue’s direction to push structural transformation through durable designs and creative materials with preventive failure solutions. The proposed solutions work together toward creating resilient infrastructure systems which resist unexpected stressors and environmental damage. 展开更多
关键词 Sustainable materials wood-derived nanomaterials structural durability emergency rescue products construction failures smart materials structural health monitoring IoT-based monitoring RESILIENCE environmental sustainability
在线阅读 下载PDF
Development and Prospect of Intelligent Monitoring Sensors for Transportation Infrastructure
15
作者 ZHANG Ziyang LI Xianghong DAN Danhui 《施工技术(中英文)》 2025年第20期12-21,59,共11页
Structural health monitoring technology uses advanced sensors to collect structural state data in real time,evaluate its integrity and residual life,and make maintenance decisions accordingly.The key of structural hea... Structural health monitoring technology uses advanced sensors to collect structural state data in real time,evaluate its integrity and residual life,and make maintenance decisions accordingly.The key of structural health monitoring is to obtain structural data accurately.With the development of new sensor technology,sensors and data acquisition devices for structural health monitoring are constantly emerging,and the performance of these devices is developing rapidly.The latest developments of fiber optic sensors,piezoelectric material sensors and self-diagnostic sensors for structural health monitoring are summarized.The basic working principle of each sensor and its application in structural health monitoring are introduced,and the challenges and opportunities faced by sensors in structural health monitoring are prospected. 展开更多
关键词 INFRASTRUCTURE health monitoring BRIDGES TUNNELS SENSORS DAMAGE identification
在线阅读 下载PDF
Laboratory evaluation of a low-cost micro electro-mechanical systems sensor for inclination and acceleration monitoring
16
作者 Antonis Paganis Vassiliki NGeorgiannou +1 位作者 Xenofon Lignos Reina El Dahr 《Deep Underground Science and Engineering》 2025年第1期46-54,共9页
In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed i... In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions. 展开更多
关键词 field monitoring Kalman filter laboratory evaluation micro electro mechanical systems(MEMS) monitoring node shaking table
原文传递
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
17
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 Structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
Dynamic reservoir monitoring using similarity analysis of passive source time-lapse seismic images: Application to waterflooding front monitoring in Shengli Oilfield, China
18
作者 Ying-He Wu Shu-Lin Pan +5 位作者 Hai-Qiang Lan Jing-Yi Chen Jose Badal Yao-Jie Chen Zi-Lin Zhang Zi-Yu Qin 《Petroleum Science》 2025年第3期1062-1079,共18页
In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great con... In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields. 展开更多
关键词 Passive source time-lapse seismic imaging Seismic interferometry Dynamic reservoir monitoring Similarityan alysis Waterflooding front monitoring Shengli Oilfield
原文传递
Research on Monitoring and Intervention Systems for College Students’ Mental Health Based on Artificial Intelligence
19
作者 Meng Lyu 《Journal of Contemporary Educational Research》 2025年第1期116-122,共7页
Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective i... Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective intervention of college students’mental health status.Therefore,this article constructs an artificial intelligence-based psychological health and intervention system for college students.Firstly,this article obtains psychological health testing data of college students through online platforms or on-campus system design,distribution of questionnaires,feedback from close contacts of students,and internal campus resources.Then,the architecture of a mental health monitoring system is designed.Its overall architecture includes a data collection layer,a data processing layer,a decision tree algorithm layer,and an evaluation display layer.The system uses the C4.5 decision tree algorithm to calculate the information gain of the processed sample data,selects the attribute with the maximum value,and constructs a decision tree structure model to evaluate students’mental health.Finally,this article studies the evaluation of students’mental health status by combining multidimensional information such as the SCL-90 scale,self-assessment scale,and student behavior data.Experimental data shows that the system can effectively identify students’mental health problems and provide precise intervention measures based on their situation,with high accuracy and practicality. 展开更多
关键词 Artificial intelligence Psychological health monitoring College students Dynamic monitoring Decision tree algorithm
在线阅读 下载PDF
Assessment of Optimal Use, Maintenance, Repair and Calibration of Radiation Monitoring Instruments in Nigeria
20
作者 Samuel Mofolorunsho Oyeyemi Olumide Olaife Akerele +5 位作者 Sunday Ufuoma Obarhua Francis Adole Agada Wasiu Kofoworola Ayuba Helen Enikpi Alakiu David Olakanmi Olaniyi Ethel Ebere Ofoegbu 《World Journal of Nuclear Science and Technology》 2025年第1期1-16,共16页
The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and... The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria. 展开更多
关键词 Radiation monitoring Instruments Detectors CALIBRATION Radiation Safety Officers PackEye Radionuclide Identifinder Personal Radiation Detectors
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部