The paper analyzes and compares systematically common A I Ming-ming monitoring methods of horizontal displacement for the main line of South-to-North water diversion mid-route project,introduces the principle,accuracy...The paper analyzes and compares systematically common A I Ming-ming monitoring methods of horizontal displacement for the main line of South-to-North water diversion mid-route project,introduces the principle,accuracy analysis,advantages and disadvantages of the methods,which has the certain guiding value for the selection of the horizontal displacement monitoring method in the main line of South-to-North water diversion mid-route project.展开更多
Four rapid spectral comparison methods are introduced in mobile labs.They are conformity test method,general correlation coefficient method,reverse correlation coefficient method and correlation coefficient method usi...Four rapid spectral comparison methods are introduced in mobile labs.They are conformity test method,general correlation coefficient method,reverse correlation coefficient method and correlation coefficient method using characteristic spectral ranges.The first method is used for tracking the movements of drugs in the distribution channels;the second is used for quickly identify new counterfeit drugs;the last two are used to screen drugs illegally added in Traditional Chinese Medicine (TCM).The applicability of the four methods is evaluated with counterfeit and authentic drugs.Our results show that these methods can be quickly constructed and used to identify counterfeit drugs accurately.展开更多
With the aging of society and the increase in people’s concern for personal health,long-term physiological signal monitoring in daily life is in demand.In recent years,electronic skin(e-skin)for daily health monitori...With the aging of society and the increase in people’s concern for personal health,long-term physiological signal monitoring in daily life is in demand.In recent years,electronic skin(e-skin)for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations.Among them,the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life.In this review,the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed.By dividing them into breathable e-skin electrodes,breathable e-skin sensors,and breathable e-skin systems,we sort out their design ideas,manufacturing processes,performances,and applications and show their advantages in long-term physiological signal monitoring in daily life.In addition,the development directions and challenges of the breathable e-skin are discussed and prospected.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
The development of Chinese system of aquatic environmental monitoring methods was summarized. The existing problem of the system of aquatic environmental monitoring methods was analyzed. At last, some suggestions were...The development of Chinese system of aquatic environmental monitoring methods was summarized. The existing problem of the system of aquatic environmental monitoring methods was analyzed. At last, some suggestions were made on setting and implementing the system of aquat- ic environmental monitoring methods in China.展开更多
There are many types of methods for monitoring atmospheric greenhouse gases,and the differences between the methods have introduced many uncertainties for the accurate monitoring of atmospheric greenhouse gases.In thi...There are many types of methods for monitoring atmospheric greenhouse gases,and the differences between the methods have introduced many uncertainties for the accurate monitoring of atmospheric greenhouse gases.In this paper,the monitoring methods of 7 long-lived greenhouse gases(LLGHG),including carbon dioxide(CO_(2)),methane(CH_(4)),nitrous oxide(N_(2)O),hydrofluorocarbons(HFCs),perfluorocarbons(PFCs),sulfur hexafluoride(SF_(6))and nitrogen trifluoride(NF_(3)),which are regulated and controlled in the Kyoto Protocol and the Doha Amendment,were summarized,and the principle,characteristics and application research progress of each method were systematically studied.Besides,their application scope was analyzed,and the domestication research of relevant instruments was analyzed and prospected.At present,the monitoring methods of atmospheric greenhouse gases are developing towards automation and multi-component simultaneous rapid detection,and are accelerating its integration with new technologies such as big data and satellite remote sensing monitoring;top-down and bottom-up methods are used to provide strong data support for carbon peaking and carbon neutral management decisions in various countries.展开更多
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co...This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.展开更多
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,...In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.展开更多
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio...Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.展开更多
With the rapid development of the city,the concept of ecological environment has been integrated into everyone’s heart.In the new era,people also have higher requirements for the quality of living environment.However...With the rapid development of the city,the concept of ecological environment has been integrated into everyone’s heart.In the new era,people also have higher requirements for the quality of living environment.However,at this stage,with the development of urbanization and industrialization,the problem of environmental pollution has become more and more serious.Therefore,we must do a good job in urban environmental monitoring,pay attention to the protection of urban environment,design and implement effective governance methods,so as to improve the quality of environmental governance.This article analyzes the problems in urban environmental monitoring,and formulates reasonable treatment methods and suggestions.展开更多
The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming...The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration.展开更多
Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in ...Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures.展开更多
AIM: TO investigate the agreement between esophageal manometry and pH step-up method in two different patient positions. METHODS: Eighteen subjects were included in the study. First, the distance from the nose to th...AIM: TO investigate the agreement between esophageal manometry and pH step-up method in two different patient positions. METHODS: Eighteen subjects were included in the study. First, the distance from the nose to the proximal border of the lower esophageal sphincter (LES) was measured manometrically. Then a different investigator, who was blinded to the results of the first study, measured the same distance using the pH step-up method, with the patient in both upright and supine positions. An assessment of agreement between the two techniques was performed. RESULTS: In the supine position, the measurement of only one subject was outside the range accepted for correct positioning (~〈 3 cm distal or proximal to the LES). In the upright position, errors in measurement were recognized in five subjects. Bland-Airman plots revealed good agreement between measurements obtained manometrically and by the pH-step up method with the patient in the supine position. CONCLUSION: In the case of nonavailability of manometric detection device, the pH step-up method can facilitate the positioning of the 24 h pH monitoring catheter with the patient in the supine position. Thisshould increase the use of pH-metry in clinical practice for subjects with suspected gastroesophageal reflux disease if our results are supported by further studies.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor...Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.展开更多
A statistical monitoring method has been developedfor accurate, safety surveillance methods of γ-BHC resideueor harmful substances in foods or feeds. It is very importantfor safety monitoring and arbitrament inspecti...A statistical monitoring method has been developedfor accurate, safety surveillance methods of γ-BHC resideueor harmful substances in foods or feeds. It is very importantfor safety monitoring and arbitrament inspections. This paperintroduces a calculation formula by a six-point calibrationmethod and an example for detection of Y-BHC in corn.The method can guarantee the accuracy of the results,and it does very substantially reduce the probability of an er-ror by one-point calibration.展开更多
In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a ...In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.展开更多
Sea-ice is an important operational item for real timely monitoring and forecasting marine environment of China. This paper introduces an operational method of satellite remote sensing to monitor sea- ice using quanti...Sea-ice is an important operational item for real timely monitoring and forecasting marine environment of China. This paper introduces an operational method of satellite remote sensing to monitor sea- ice using quantitative data of NOAA, and its contents include computer processing of AVHRR sounding data of NOAA and its program design, imagery processing of sea-ice imagery from satellite and their thematic analysis. The sea-ice satellite colour imageries processed via this software system are able to interpret sea-ice pattern, characterizing it by thickness, maximum position of ice boundary, floe concentration and dynamic process of ice changing. At the same time, analyses of the ice condition of the Bohai Sea for the two-year period (1986-1988) as monitored by satellite have been summarized.展开更多
To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic m...To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic method was proposed and applied to the ASP displacement monitoring test in a block of the Daqing Oilfield. In the process of ASP flooding, the electromagnetic field was measured many times. The data acquired before the ASP flooding were set as the background field, and the resistivity model was obtained by inversion. Then, the resistivity data were calibrated by logging data and the resistivity model was established. Finally, the range and front of ASP flooding were deduced with the residual gradient from the spatial domain first-order difference of the resistivity model. Production data of well groups in this block have proved that this method can work out the range and front of ASP flooding accurately, providing support for optimization of ASP flooding parameters.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
文摘The paper analyzes and compares systematically common A I Ming-ming monitoring methods of horizontal displacement for the main line of South-to-North water diversion mid-route project,introduces the principle,accuracy analysis,advantages and disadvantages of the methods,which has the certain guiding value for the selection of the horizontal displacement monitoring method in the main line of South-to-North water diversion mid-route project.
基金National Key Technologies R&D Program Foundation of China(Grant No.2008BAI55B06).
文摘Four rapid spectral comparison methods are introduced in mobile labs.They are conformity test method,general correlation coefficient method,reverse correlation coefficient method and correlation coefficient method using characteristic spectral ranges.The first method is used for tracking the movements of drugs in the distribution channels;the second is used for quickly identify new counterfeit drugs;the last two are used to screen drugs illegally added in Traditional Chinese Medicine (TCM).The applicability of the four methods is evaluated with counterfeit and authentic drugs.Our results show that these methods can be quickly constructed and used to identify counterfeit drugs accurately.
基金supported by the National Key R&D Program 2021YFC3002201 of Chinathe National Natural Science Foundation(U20A20168,61874065,51861145202)of ChinaThe authors are also thankful for the support of the Research Fund from the Beijing Innovation Center for Future Chip,the Independent Research Program of Tsinghua University(20193080047).
文摘With the aging of society and the increase in people’s concern for personal health,long-term physiological signal monitoring in daily life is in demand.In recent years,electronic skin(e-skin)for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations.Among them,the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life.In this review,the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed.By dividing them into breathable e-skin electrodes,breathable e-skin sensors,and breathable e-skin systems,we sort out their design ideas,manufacturing processes,performances,and applications and show their advantages in long-term physiological signal monitoring in daily life.In addition,the development directions and challenges of the breathable e-skin are discussed and prospected.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金Supported by Study on Water Environment Quality Monitoring Technological Method (2009ZX07527-001)Chongqing Natural Science Fund (CSTC,2009B137391)
文摘The development of Chinese system of aquatic environmental monitoring methods was summarized. The existing problem of the system of aquatic environmental monitoring methods was analyzed. At last, some suggestions were made on setting and implementing the system of aquat- ic environmental monitoring methods in China.
基金Supported by the Science and Technology Plan Project of Inner Mongolia Autonomous Region(2022YFHH0116)。
文摘There are many types of methods for monitoring atmospheric greenhouse gases,and the differences between the methods have introduced many uncertainties for the accurate monitoring of atmospheric greenhouse gases.In this paper,the monitoring methods of 7 long-lived greenhouse gases(LLGHG),including carbon dioxide(CO_(2)),methane(CH_(4)),nitrous oxide(N_(2)O),hydrofluorocarbons(HFCs),perfluorocarbons(PFCs),sulfur hexafluoride(SF_(6))and nitrogen trifluoride(NF_(3)),which are regulated and controlled in the Kyoto Protocol and the Doha Amendment,were summarized,and the principle,characteristics and application research progress of each method were systematically studied.Besides,their application scope was analyzed,and the domestication research of relevant instruments was analyzed and prospected.At present,the monitoring methods of atmospheric greenhouse gases are developing towards automation and multi-component simultaneous rapid detection,and are accelerating its integration with new technologies such as big data and satellite remote sensing monitoring;top-down and bottom-up methods are used to provide strong data support for carbon peaking and carbon neutral management decisions in various countries.
基金the NSF CCSS-2152638 and the IEN Center Grant from the Institute for Electronics and Nanotechnology at Georgia Tech.
文摘This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.
基金the Fundamental Research Funds for the Central Universities,National Natural Science Foundation of China(No.82302345).
文摘In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
基金The authors would like to acknowledge financial support from the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.T2225010,32171399,and 32171456)+4 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02)Pazhou Lab,Guangzhou(No.PZL2021KF0003)The authors also would like to thank the funding support from the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,and State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab2211)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645)JL would like to thank the National Natural Science Foundation of China(No.62105380)and the China Postdoctoral Science Foundation(No.2021M693686).
文摘Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.
文摘With the rapid development of the city,the concept of ecological environment has been integrated into everyone’s heart.In the new era,people also have higher requirements for the quality of living environment.However,at this stage,with the development of urbanization and industrialization,the problem of environmental pollution has become more and more serious.Therefore,we must do a good job in urban environmental monitoring,pay attention to the protection of urban environment,design and implement effective governance methods,so as to improve the quality of environmental governance.This article analyzes the problems in urban environmental monitoring,and formulates reasonable treatment methods and suggestions.
文摘The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration.
文摘Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures.
文摘AIM: TO investigate the agreement between esophageal manometry and pH step-up method in two different patient positions. METHODS: Eighteen subjects were included in the study. First, the distance from the nose to the proximal border of the lower esophageal sphincter (LES) was measured manometrically. Then a different investigator, who was blinded to the results of the first study, measured the same distance using the pH step-up method, with the patient in both upright and supine positions. An assessment of agreement between the two techniques was performed. RESULTS: In the supine position, the measurement of only one subject was outside the range accepted for correct positioning (~〈 3 cm distal or proximal to the LES). In the upright position, errors in measurement were recognized in five subjects. Bland-Airman plots revealed good agreement between measurements obtained manometrically and by the pH-step up method with the patient in the supine position. CONCLUSION: In the case of nonavailability of manometric detection device, the pH step-up method can facilitate the positioning of the 24 h pH monitoring catheter with the patient in the supine position. Thisshould increase the use of pH-metry in clinical practice for subjects with suspected gastroesophageal reflux disease if our results are supported by further studies.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
基金supported by the National Key Research and Development Project of China(No.2023YFB3709605)the National Natural Science Foundation of China(No.62073193)the National College Student Innovation Training Program(No.202310422122)。
文摘Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.
文摘A statistical monitoring method has been developedfor accurate, safety surveillance methods of γ-BHC resideueor harmful substances in foods or feeds. It is very importantfor safety monitoring and arbitrament inspections. This paperintroduces a calculation formula by a six-point calibrationmethod and an example for detection of Y-BHC in corn.The method can guarantee the accuracy of the results,and it does very substantially reduce the probability of an er-ror by one-point calibration.
基金Funded by the National Natural Science Foundation of China (No.50708065)the National High-tech R&D Program(863 Program )(No.2007-AA-11-Z-113)the Key Projects in the Science and Technology Pillar Program of Tianjin(No.11ZCKFSF00300)
文摘In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.
文摘Sea-ice is an important operational item for real timely monitoring and forecasting marine environment of China. This paper introduces an operational method of satellite remote sensing to monitor sea- ice using quantitative data of NOAA, and its contents include computer processing of AVHRR sounding data of NOAA and its program design, imagery processing of sea-ice imagery from satellite and their thematic analysis. The sea-ice satellite colour imageries processed via this software system are able to interpret sea-ice pattern, characterizing it by thickness, maximum position of ice boundary, floe concentration and dynamic process of ice changing. At the same time, analyses of the ice condition of the Bohai Sea for the two-year period (1986-1988) as monitored by satellite have been summarized.
基金Supported by the National Key R&D Program of China(2018YFC0807802)National Natural Science Foundation of China(41874081)。
文摘To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic method was proposed and applied to the ASP displacement monitoring test in a block of the Daqing Oilfield. In the process of ASP flooding, the electromagnetic field was measured many times. The data acquired before the ASP flooding were set as the background field, and the resistivity model was obtained by inversion. Then, the resistivity data were calibrated by logging data and the resistivity model was established. Finally, the range and front of ASP flooding were deduced with the residual gradient from the spatial domain first-order difference of the resistivity model. Production data of well groups in this block have proved that this method can work out the range and front of ASP flooding accurately, providing support for optimization of ASP flooding parameters.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.