In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu...In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.展开更多
The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advanta...The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.展开更多
A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is ba...A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermaUy insulated. Combining this model with the control-volume method provides temperatures at different points on a cross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonstrated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.展开更多
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling...A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.展开更多
A huge amount of sensitive personal data is being collected by various online health monitoring applications.Although the data is anonymous,the personal trajectories(e.g.,the chronological access records of small cell...A huge amount of sensitive personal data is being collected by various online health monitoring applications.Although the data is anonymous,the personal trajectories(e.g.,the chronological access records of small cells)could become the anchor of linkage attacks to re-identify the users.Focusing on trajectory privacy in online health monitoring,we propose the User Trajectory Model(UTM),a generic trajectory re-identification risk predicting model to reveal the underlying relationship between trajectory uniqueness and aggregated data(e.g.,number of individuals covered by each small cell),and using the parameter combination of aggregated data to further mathematically derive the statistical characteristics of uniqueness(i.e.,the expectation and the variance).Eventually,exhaustive simulations validate the effectiveness of the UTM in privacy risk evaluation,confirm our theoretical deductions and present counter-intuitive insights.展开更多
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj...The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.展开更多
Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is develo...Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.展开更多
To promote the accuracy and application of arcing time measurement for SF_6 circuit breaker in substation,five measurement methods are investigated by two cases experimentally. First,the test results of the five metho...To promote the accuracy and application of arcing time measurement for SF_6 circuit breaker in substation,five measurement methods are investigated by two cases experimentally. First,the test results of the five methods for a circuit breaker in different stages of wear and a circuit breaker with a component failure were presented. Then,the time error is analyzed by simulation.Finally,the advantage and disadvantage of these methods are discussed.展开更多
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining...The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.展开更多
Injection molding is a complicated production technique for the manufacturing of polymer products.During injection molding,it's hard to predict molding quality;the injection molding parameters,such as mold tempera...Injection molding is a complicated production technique for the manufacturing of polymer products.During injection molding,it's hard to predict molding quality;the injection molding parameters,such as mold temperature,melt temperature,packing pressure and packing time,affect the final properties of product.The cavity pressure is a significant key factor.Residual stress and injection molding weight are significantly affected by the cavity pressure.This study created an approach to predict weight of injection-molded by real-time online cavity pressure monitoring.This study uses a 6-inch with thickness lmm light guide panel and the largest area beneath the pressure curve of time as well as the maximum pressure as its characteristic.The upper and lower limits of the control are set to+2 standard deviations,and GUI(Graphical User Interface)-based LabVIEW software is used to perform calculation and analysis of the pressure curve.The results of the experiment show that the online internal cavity pressure monitoring system can effectively monitor the quality of the molded products.In 500 injection molding cycle tests,its error rate was less than 8%,whereas the deviation in mass of the molded products selected through the system's filtering process was successfully controlled to be within±4%.展开更多
Power cable is one of the important components of power system infrastructure and plays an important role infrastructure and plays an important role in power supply process. If power cable runs under high voltage and ...Power cable is one of the important components of power system infrastructure and plays an important role infrastructure and plays an important role in power supply process. If power cable runs under high voltage and large current for a long time, it may exceed the temperature limit due to overload, insulation aging and joint failure. If the abnormality cannot be found in time, it will directly affect the service life of the cable. The insulation performance of power cable is the main factor that determines the normal operation of power cable. And the temperature of cable joint and conductor is the key index that affects the insulation performance of power cable. Monitoring the temperature of power cable is one of the key technologies in power system research and development.展开更多
Particulate matter (PM} in the Kunshan High-Tech zone is studied during a three-month campaign. PM and trace elements are measured by the online pollution monitoring, forecast-warning and source term retrieval system...Particulate matter (PM} in the Kunshan High-Tech zone is studied during a three-month campaign. PM and trace elements are measured by the online pollution monitoring, forecast-warning and source term retrieval system AS3. Hourly measured concentrations of PM10, PM2.5 and 16 trace elements in the PM2.5 section (Ca, Pb, Cu, C1, V, Cr, Fe, Ti, Mn, Ni, Zn, Ga, As, Se, Sr, Ba) are focused. Source apportionment of trace elements by Positive Matrix Factorization modeling indicates that there are five major sources, including dust, industrial processing, traffic, combustion, and sea salt with contribution rate of 23.68%, 21.66%, 14.30%, 22.03%, and 6.89%, respectively. Prediction ofptume dispersion from concrete plant and traffic emissions shows that PM20 pollution of concrete plant is three orders of magnitude more than that of the traffic. The influence range can extend to more than 3 km in 1 hr. Because the footprint of the industrial plumes is constantly moving according to the local meteorological conditions, the fixed monitoring sites scattered in a few hundred meters haven't captured the heaviest pollution plume at the local scale of a few km2. As a more intensive monitoring network is not operationally possible, the use of online modeling gives accurate and quantitative information of plume location, which increases the spatial pollution monitoring capacity and improves the understanding of measurement data. These results indicate that the development of the AS3 system, which combines monitoring equipment and air pollution modeling systems, is beneficial to the real-time pollution monitoring in the industrial zone.展开更多
With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on t...With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example.展开更多
We presents a vapor online monitor system model of vapor power station developed by visual tool rational rose 2000.Use cases such as on line instrument(onlineinstr),control,query,report,real database(realdb)and alarm ...We presents a vapor online monitor system model of vapor power station developed by visual tool rational rose 2000.Use cases such as on line instrument(onlineinstr),control,query,report,real database(realdb)and alarm are generated according to the system requirements.Use case view and class view of the system are formed at the same time.As for all the UML models of the system,this paper focuses the discussion on the class view,the component diagram of the control class and the sequence diagram of the query class.Corresponding C^(++)codes are produced and finally transferred into the spot running software.展开更多
In this paper, we propose two monitoring schemes to monitor change in the mean vector of independent multivariate process after a period of size m. The first procedure is based on the CUSUM of residuals, and the secon...In this paper, we propose two monitoring schemes to monitor change in the mean vector of independent multivariate process after a period of size m. The first procedure is based on the CUSUM of residuals, and the second procedure employs the CUSUM of recursive residuals. The corresponding asymptotic distributions of the statistics are derived. Simula- tions show that the proposed monitoring procedures perform well. The empirical application illustrates the practicability and effectiveness of the procedures.展开更多
The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learnin...The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement.展开更多
With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly pro...With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly provide controlling functions more than storing,processing or computing the measured data.This study develops an online fault detection configuration on the equipment side of air conditioning systems to realize these functions.Modbus communication is served to collect real-time operational data.The calculating programs are embedded to identify whether the measured signals exceed their limits or not,and to detect if sensor reading is frozen and other faults in relation to the operational performance are generated or not.The online fault detection configuration is tested on an actual variable-air-volume(VAV)air handling unit(AHU).The results show that the time ratio of fault detection exceeds 95.00%,which means that the configuration exhibits an acceptable fault detection effect.展开更多
Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h...Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.展开更多
The operation furnace profile for the high heat load zone was one of the important factors affecting the stable and high-quality production of the blast furnace,but it was difficult to monitor directly.To address this...The operation furnace profile for the high heat load zone was one of the important factors affecting the stable and high-quality production of the blast furnace,but it was difficult to monitor directly.To address this issue,an online calculation model for the operation furnace profile was proposed based on a dual-driven approach combining data and mechanisms,by integrating mechanism experiment,numerical simulation,and machine learning.The experimentally determined slag layer hanging temperature was 1130℃,and the thermal conductivity ranged from 1.32 to 1.96 m^(2)℃^(-1).Based on the 3D slag-hanging numerical simulation model,a database was constructed,containing 2294 sets of mechanism cases for the slag layer.The fusion of data modeling,heat transfer theory,and expert experience enabled the online calculation of key input variables for the operation furnace profile,particularly the quantification of the“black-box”variable of gas temperature.Simulated data were used as inputs,and light gradient boosting machine was applied to construct the online calculation model for the operation furnace profile.This model facilitated the online calculation of the slag layer thickness and other key indices.The coefficient of determination of the model exceeded 0.98,indicating high accuracy.A slag layer state judgment model was constructed,categorizing states as shedding,too thin,normal,and too thick.Real-time data were applied,and the average slag thickness in the high heat load area of the test data ranged from 40 to 80 mm,which was consistent with field experience.The absolute value of the Pearson correlation coefficient between slag layer thickness,thermocouple temperature,and heat load data was above 0.85,indicating that the calculated results closely aligned with the actual trends.A 3D visual online monitoring system for the operation furnace profile was created,and it has been successfully implemented at the blast furnace site.展开更多
Comparing the online monitoring data of Qilihai with the manual testing data in the laboratory, the results show that the trends of the two are consistent;Monitoring data analysts should fully consider the relationshi...Comparing the online monitoring data of Qilihai with the manual testing data in the laboratory, the results show that the trends of the two are consistent;Monitoring data analysts should fully consider the relationship between various parameters and conduct a comprehensive analysis of water pollution. Through the application of online monitoring data, data analysis, water quality evaluation and pollutant flux calculation can be carried out, which should give full play to its role and influence in water quality monitoring.展开更多
文摘In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.
基金Science and Technology Projects of Gansu Electric Power Company(No.52274514005W)
文摘The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.
基金Funded by the National Science and Technology Support Project of China (No. 2006BAA03B02-03)
文摘A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermaUy insulated. Combining this model with the control-volume method provides temperatures at different points on a cross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonstrated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.
基金the Korea Research Foundation Grant Funded by the Korean Government (MOEHRD) (KRF-2007-331-D00089) Funded by Seoul Development Institute (CS070160)
文摘A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61871062and Grant 61771082the Natural Science Foundation of Chongqing of China under Grant cstc2013jcyjA40066+3 种基金the Program for Innovation Team Building at Institutions of Higher Education in Chongqing under Grant CXTDX201601020the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN201801316the Key Industrial Technology Development Project of Chongqing of China Development and Reform Commission under Grant 2018148208the Innovation and Entrepreneurship Demonstration Team of Yingcai Program of Chongqing of China under Grant CQYC201903167.
文摘A huge amount of sensitive personal data is being collected by various online health monitoring applications.Although the data is anonymous,the personal trajectories(e.g.,the chronological access records of small cells)could become the anchor of linkage attacks to re-identify the users.Focusing on trajectory privacy in online health monitoring,we propose the User Trajectory Model(UTM),a generic trajectory re-identification risk predicting model to reveal the underlying relationship between trajectory uniqueness and aggregated data(e.g.,number of individuals covered by each small cell),and using the parameter combination of aggregated data to further mathematically derive the statistical characteristics of uniqueness(i.e.,the expectation and the variance).Eventually,exhaustive simulations validate the effectiveness of the UTM in privacy risk evaluation,confirm our theoretical deductions and present counter-intuitive insights.
文摘The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.
文摘Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.
基金Project Supported by the Technique Project of China Southern Power Grid Co.,Ltd.(20142001342)
文摘To promote the accuracy and application of arcing time measurement for SF_6 circuit breaker in substation,five measurement methods are investigated by two cases experimentally. First,the test results of the five methods for a circuit breaker in different stages of wear and a circuit breaker with a component failure were presented. Then,the time error is analyzed by simulation.Finally,the advantage and disadvantage of these methods are discussed.
基金supported by the Natural Science Foundation of Shanxi Province,China(202203021211153)National Natural Science Foundation of China(51704205).
文摘The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.
文摘Injection molding is a complicated production technique for the manufacturing of polymer products.During injection molding,it's hard to predict molding quality;the injection molding parameters,such as mold temperature,melt temperature,packing pressure and packing time,affect the final properties of product.The cavity pressure is a significant key factor.Residual stress and injection molding weight are significantly affected by the cavity pressure.This study created an approach to predict weight of injection-molded by real-time online cavity pressure monitoring.This study uses a 6-inch with thickness lmm light guide panel and the largest area beneath the pressure curve of time as well as the maximum pressure as its characteristic.The upper and lower limits of the control are set to+2 standard deviations,and GUI(Graphical User Interface)-based LabVIEW software is used to perform calculation and analysis of the pressure curve.The results of the experiment show that the online internal cavity pressure monitoring system can effectively monitor the quality of the molded products.In 500 injection molding cycle tests,its error rate was less than 8%,whereas the deviation in mass of the molded products selected through the system's filtering process was successfully controlled to be within±4%.
文摘Power cable is one of the important components of power system infrastructure and plays an important role infrastructure and plays an important role in power supply process. If power cable runs under high voltage and large current for a long time, it may exceed the temperature limit due to overload, insulation aging and joint failure. If the abnormality cannot be found in time, it will directly affect the service life of the cable. The insulation performance of power cable is the main factor that determines the normal operation of power cable. And the temperature of cable joint and conductor is the key index that affects the insulation performance of power cable. Monitoring the temperature of power cable is one of the key technologies in power system research and development.
基金supported by the Ministry of Science and Technology of China under grant number 2014DFG92630by BPIFrance of France under grant number A1305005Z
文摘Particulate matter (PM} in the Kunshan High-Tech zone is studied during a three-month campaign. PM and trace elements are measured by the online pollution monitoring, forecast-warning and source term retrieval system AS3. Hourly measured concentrations of PM10, PM2.5 and 16 trace elements in the PM2.5 section (Ca, Pb, Cu, C1, V, Cr, Fe, Ti, Mn, Ni, Zn, Ga, As, Se, Sr, Ba) are focused. Source apportionment of trace elements by Positive Matrix Factorization modeling indicates that there are five major sources, including dust, industrial processing, traffic, combustion, and sea salt with contribution rate of 23.68%, 21.66%, 14.30%, 22.03%, and 6.89%, respectively. Prediction ofptume dispersion from concrete plant and traffic emissions shows that PM20 pollution of concrete plant is three orders of magnitude more than that of the traffic. The influence range can extend to more than 3 km in 1 hr. Because the footprint of the industrial plumes is constantly moving according to the local meteorological conditions, the fixed monitoring sites scattered in a few hundred meters haven't captured the heaviest pollution plume at the local scale of a few km2. As a more intensive monitoring network is not operationally possible, the use of online modeling gives accurate and quantitative information of plume location, which increases the spatial pollution monitoring capacity and improves the understanding of measurement data. These results indicate that the development of the AS3 system, which combines monitoring equipment and air pollution modeling systems, is beneficial to the real-time pollution monitoring in the industrial zone.
文摘With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example.
基金Supported by the Scientific Item of National Power Company(No.SPKJ016-017)
文摘We presents a vapor online monitor system model of vapor power station developed by visual tool rational rose 2000.Use cases such as on line instrument(onlineinstr),control,query,report,real database(realdb)and alarm are generated according to the system requirements.Use case view and class view of the system are formed at the same time.As for all the UML models of the system,this paper focuses the discussion on the class view,the component diagram of the control class and the sequence diagram of the query class.Corresponding C^(++)codes are produced and finally transferred into the spot running software.
基金Supported by Humanities and Social Science Research Project Fund of Ministry of Education(Grant No.14JA790034)the National Natural Science Foundation of Tianyuan Fund(Grant No.11226217)
文摘In this paper, we propose two monitoring schemes to monitor change in the mean vector of independent multivariate process after a period of size m. The first procedure is based on the CUSUM of residuals, and the second procedure employs the CUSUM of recursive residuals. The corresponding asymptotic distributions of the statistics are derived. Simula- tions show that the proposed monitoring procedures perform well. The empirical application illustrates the practicability and effectiveness of the procedures.
基金supported by the Key Projects of Shaanxi Province Key R&D Program(2018ZDXM-GY-040)supported by Natural Science Foundation of Shaanxi Province,Basic Research Program Project(2019JQ-843)supported by Graduate Scientific Innovation Fund for Xi’an Polytechnic University(chx2023012).
文摘The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement.
基金Research Project of China Ship Development and Design Center,Wuhan,China。
文摘With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly provide controlling functions more than storing,processing or computing the measured data.This study develops an online fault detection configuration on the equipment side of air conditioning systems to realize these functions.Modbus communication is served to collect real-time operational data.The calculating programs are embedded to identify whether the measured signals exceed their limits or not,and to detect if sensor reading is frozen and other faults in relation to the operational performance are generated or not.The online fault detection configuration is tested on an actual variable-air-volume(VAV)air handling unit(AHU).The results show that the time ratio of fault detection exceeds 95.00%,which means that the configuration exhibits an acceptable fault detection effect.
基金the China Railway Wuhan Bureau Group Co.,Ltd.under the 2023 Science and Technology Research and Development Plan(Second Batch)(Wuhan Railway Science and Information Letter[2023]No.269),classification code 23GD07.
文摘Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52404343 and 52274326)the Fundamental Research Funds for the Central Universities(Grant Nos.N2425031 and N25BJD007)+1 种基金the China Postdoctoral Science Foundation(Grant No.2024M760370)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project)(Grant No.2023JH2/101800058).
文摘The operation furnace profile for the high heat load zone was one of the important factors affecting the stable and high-quality production of the blast furnace,but it was difficult to monitor directly.To address this issue,an online calculation model for the operation furnace profile was proposed based on a dual-driven approach combining data and mechanisms,by integrating mechanism experiment,numerical simulation,and machine learning.The experimentally determined slag layer hanging temperature was 1130℃,and the thermal conductivity ranged from 1.32 to 1.96 m^(2)℃^(-1).Based on the 3D slag-hanging numerical simulation model,a database was constructed,containing 2294 sets of mechanism cases for the slag layer.The fusion of data modeling,heat transfer theory,and expert experience enabled the online calculation of key input variables for the operation furnace profile,particularly the quantification of the“black-box”variable of gas temperature.Simulated data were used as inputs,and light gradient boosting machine was applied to construct the online calculation model for the operation furnace profile.This model facilitated the online calculation of the slag layer thickness and other key indices.The coefficient of determination of the model exceeded 0.98,indicating high accuracy.A slag layer state judgment model was constructed,categorizing states as shedding,too thin,normal,and too thick.Real-time data were applied,and the average slag thickness in the high heat load area of the test data ranged from 40 to 80 mm,which was consistent with field experience.The absolute value of the Pearson correlation coefficient between slag layer thickness,thermocouple temperature,and heat load data was above 0.85,indicating that the calculated results closely aligned with the actual trends.A 3D visual online monitoring system for the operation furnace profile was created,and it has been successfully implemented at the blast furnace site.
文摘Comparing the online monitoring data of Qilihai with the manual testing data in the laboratory, the results show that the trends of the two are consistent;Monitoring data analysts should fully consider the relationship between various parameters and conduct a comprehensive analysis of water pollution. Through the application of online monitoring data, data analysis, water quality evaluation and pollutant flux calculation can be carried out, which should give full play to its role and influence in water quality monitoring.