期刊文献+
共找到5,062篇文章
< 1 2 250 >
每页显示 20 50 100
Study of Modeling for Scalable and Monitorable Network on Chip
1
作者 Gaoming Du Yulong Zhu +1 位作者 Cunqiang Zhang Yukun Song 《Communications and Network》 2012年第2期183-187,共5页
The performance of multiple processor based on Network on Chip (NoC) is limited to the communication efficiency of network. It is difficult to be optimized of routing and arbitration algorithm and be assessed of perfo... The performance of multiple processor based on Network on Chip (NoC) is limited to the communication efficiency of network. It is difficult to be optimized of routing and arbitration algorithm and be assessed of performance in the beginning of design because of its complex test cases. This paper constructs a scalable and monitored system level model with SystemC for NoC with Packet Connected Circuit (PCC) protocol. The overall performance and transfer details can be evaluated particularly by running the model, and the statistical basis can also be provided to the optimization of designing NoC. 展开更多
关键词 NOC SYSTEMC PCC SCALABLE monitorable
暂未订购
Robust and Biodegradable Heterogeneous Electronics with Customizable Cylindrical Architecture for Interference-Free Respiratory Rate Monitoring
2
作者 Jing Zhang Wenqi Wang +9 位作者 Sanwei Hao Hongnan Zhu Chao Wang Zhouyang Hu Yaru Yu Fangqing Wang Peng Fu Changyou Shao Jun Yang Hailin Cong 《Nano-Micro Letters》 2026年第1期914-934,共21页
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in... A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory. 展开更多
关键词 Wearable electronics Piezoresistive sensor HETEROGENEOUS CELLULOSE Respiratory monitoring
在线阅读 下载PDF
Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring
3
作者 Moneerah Alotaibi 《Computers, Materials & Continua》 2026年第1期1629-1648,共20页
Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and stru... Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches. 展开更多
关键词 Machine learning semantic segmentation remote sensors deep learning object monitoring system
在线阅读 下载PDF
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus
4
作者 Ali Sedighi Tianyu Kou +1 位作者 Hui Huang Yi Li 《Nano-Micro Letters》 2026年第1期375-437,共63页
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in... Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management. 展开更多
关键词 Wearable biosensors Multimodal sensors Diabetes monitoring Sweat biomarkers Glucose biosensors
在线阅读 下载PDF
On-Skin Epidermal Electronics for Next-Generation Health Management
5
作者 Jinbin Xu Xiaoliang Chen +7 位作者 Sheng Li Yizhuo Luo Shizheng Deng Bo Yang Jian Lv Hongmiao Tian Xiangming Li Jinyou Shao 《Nano-Micro Letters》 2026年第1期609-646,共38页
Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have g... Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring. 展开更多
关键词 On-skin epidermal electronics ADHESIVENESS Breathability Mechanoelectrical stability Long-term biosignal monitoring
在线阅读 下载PDF
Therapeutic effects of low-intensity transcranial focused ultrasound stimulation on ischemic stroke in rats:An in vivo evaluation using electrical impedance tomography
6
作者 Jiecheng Guo Sixuan He +4 位作者 Li Yan Lei Wang Xuetao Shi Huijing Hu Le Li 《Neural Regeneration Research》 2026年第3期1183-1190,共8页
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to... Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke. 展开更多
关键词 animal model brain stimulation electrical impedance tomography evaluation impedance noninvasive treatment real-time monitoring REHABILITATION STROKE transcranial focused ultrasound stimulation
暂未订购
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
7
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 Temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
双镜联合结合面神经监测在中耳胆脂瘤术中的临床应用研究
8
作者 王建洪 黄榆岚 +6 位作者 罗小邹 龙盈 刘梅 郭大燕 龚丽梅 邹爽 陈小春 《中国耳鼻咽喉头颈外科》 2025年第1期51-53,共3页
目的探讨双镜联合结合面神经监测在中耳胆脂瘤术中的应用。方法纳入104例病例随机分为3组,双镜+面神经监测组35例、耳显微镜+面神经监测组35例和单纯耳显微镜组34例。对三组患者手术用时、术后干耳占比、有无鼓膜穿孔、是否面瘫、术前... 目的探讨双镜联合结合面神经监测在中耳胆脂瘤术中的应用。方法纳入104例病例随机分为3组,双镜+面神经监测组35例、耳显微镜+面神经监测组35例和单纯耳显微镜组34例。对三组患者手术用时、术后干耳占比、有无鼓膜穿孔、是否面瘫、术前术后气骨导听力情况及术后复发率进行对比分析。结果双镜+面神经监测组、显微镜+面神经监测组、单纯显微镜组的手术时间分别为(115.34±11.87)min、(121.71±13.32)min、(130.56±19.97)min,术后胆脂瘤复发率分别为5.71%、25.71%、26.47%,双镜联合结合面神经监测组用时最短、复发率最低,差异有统计学意义。三组术后1个月干耳占比分别为85.7%、60%、61.7%,鼓膜穿孔数分别为4例、3例、5例,术后气骨导听力变化分别为(12.46±4.93)dB、(12.17±4.84)dB、(11.79±3.72)dB,三组间差异无统计学意义。单纯显微镜组术后出现1例短暂面瘫。结论双镜联合结合术中面神经监测可以有效缩短手术用时,减少胆脂瘤复发。 展开更多
关键词 显微镜检查(Microscopy) 胆脂瘤 中耳(Cholesteatoma Middle Ear) 面神经损伤(Facial Nerve Injuries) 耳内镜检查(otoendoscopy) 双镜联合(dual-mirror combination) 面神经监测(facial nerve monitoring) 复发率(recurrence rate)
暂未订购
Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies 被引量:2
9
作者 Dian Jiao Lai Xu +3 位作者 Zhen Gu Hua Yan Dingding Shen Xiaosong Gu 《Neural Regeneration Research》 SCIE CAS 2025年第4期917-935,共19页
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ... Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease. 展开更多
关键词 DIAGNOSIS drug treatment ELECTROENCEPHALOGRAPHY epilepsy monitoring EPILEPSY nerve regeneration NEUROSTIMULATION non-drug interventions PATHOGENESIS prediction
暂未订购
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:3
10
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique 被引量:1
11
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
在线阅读 下载PDF
Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy conditions 被引量:2
12
作者 Lintao Han Hengyi Lv +3 位作者 Chengshan Han Yuchen Zhao Qing Han Hailong Liu 《Journal of Environmental Sciences》 2025年第6期203-218,共16页
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we... Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability. 展开更多
关键词 Remote sensing Image dehazing Environmental monitoring Neural network INTERPRETABILITY
原文传递
Recent applications of EEG-based brain-computer-interface in the medical field 被引量:2
13
作者 Xiu-Yun Liu Wen-Long Wang +39 位作者 Miao Liu Ming-Yi Chen Tânia Pereira Desta Yakob Doda Yu-Feng Ke Shou-Yan Wang Dong Wen Xiao-Guang Tong Wei-Guang Li Yi Yang Xiao-Di Han Yu-Lin Sun Xin Song Cong-Ying Hao Zi-Hua Zhang Xin-Yang Liu Chun-Yang Li Rui Peng Xiao-Xin Song Abi Yasi Mei-Jun Pang Kuo Zhang Run-Nan He Le Wu Shu-Geng Chen Wen-Jin Chen Yan-Gong Chao Cheng-Gong Hu Heng Zhang Min Zhou Kun Wang Peng-Fei Liu Chen Chen Xin-Yi Geng Yun Qin Dong-Rui Gao En-Ming Song Long-Long Cheng Xun Chen Dong Ming 《Military Medical Research》 2025年第8期1283-1322,共40页
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC... Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility. 展开更多
关键词 Brain-computer interfaces(BCIs) Medical applications REHABILITATION COMMUNICATION Brain monitoring DIAGNOSIS
原文传递
Shining a light on environmental science:Recent advances in SERS technology for rapid detection of persistent toxic substances 被引量:2
14
作者 Zhenli Sun Xunlong Ji +1 位作者 Shaoyu Lu Jingjing Du 《Journal of Environmental Sciences》 2025年第7期251-263,共13页
Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmenta... Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts.This article presents a concise overview of the components of PTS,pertinent environmental regulations,and conventional detection methodologies.Additionally,we offer an in-depth review of the principles,development,and practical applications of surface-enhanced Raman scattering(SERS)in environmental monitoring,emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices.Recent progress in enhancing SERS sensitivity,improving selectivity,and practical implementations are detailed,showcasing innovative materials and methods.Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research. 展开更多
关键词 Persistent toxic substances Surface-enhanced Raman scattering Environmental monitoring Public health Sensitivity SPECIFICITY
原文传递
Sedation in endoscopy:Current practices and future innovations 被引量:1
15
作者 Angelo Bruni Giovanni Barbara +2 位作者 Alessandro Vitello Giovanni Marasco Marcello Maida 《World Journal of Gastrointestinal Endoscopy》 2025年第6期1-5,共5页
Sedation practices in gastrointestinal endoscopy have evolved considerably,driven by patient demand for comfort and the need to minimize cardiopulmonary complications.Recent guidelines emphasize personalized sedation ... Sedation practices in gastrointestinal endoscopy have evolved considerably,driven by patient demand for comfort and the need to minimize cardiopulmonary complications.Recent guidelines emphasize personalized sedation strategies,risk assessment,and vigilant hemodynamic monitoring to ensure that sedation depth aligns with each patient’s comorbidities and procedural requirements.Within this landscape,the trial by Luo et al highlights the value of adding etomidate to propofol target-controlled infusion,demonstrating significantly reduced hypotension,faster induction,and fewer respiratory complications in typical American Society of Anesthesiologists I-III candidates.These findings align with broader recommendations from both European and American societies advo-cating sedation regimens that preserve stable circulation.Etomidate’s favorable hemodynamic profile,coupled with propofol’s reliability,suggests potential applications in advanced endoscopic interventions such as endoscopic retrograde cholangiopancreatography,interventional endoscopic ultrasound,and endoscopic submucosal dissection,where deeper or more sustained sedation is often required.Remimazolam,a novel short-acting benzodiazepine,has similarly been associated with reduced cardiovascular depression and faster recovery,partic-ularly in high-risk populations,although direct comparisons between etomidate-propofol and remimazolam-based regimens remain limited.Further investig-ations into these sedation strategies in higher-risk cohorts,as well as complex the-rapeutic endoscopy,will likely inform more nuanced,patient-specific protocols aimed at maximizing both safety and procedural efficiency. 展开更多
关键词 ETOMIDATE PROPOFOL Remimazolam Endoscopy sedation Gastrointestinal endoscopy Sedation monitoring Target-controlled infusion
暂未订购
A battery-free wireless temperature sensing chipset implemented by 55 and 65 nm CMOS process 被引量:1
16
作者 Jiayi Wang Haoyang Li +4 位作者 Weixiao Wang Tianying Fang Jiaqing Li Yuxuan Luo Bo Zhao 《Journal of Semiconductors》 2025年第6期22-29,共8页
In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conv... In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conventional tempera-ture sensors trade the measurement accuracy with power consumption.In this work,we present a battery-free wireless tempera-ture sensing chip for long-termly monitoring during food production.A calibrated oscillator-based CMOS temperature sensor is proposed instead of the ADC-based power-hungry circuits in conventional works.In addition,the sensor chip can harvest the power transferred by a remote reader to eliminate the use of battery.Meanwhile,the system conducts wireless bidirectional communication between the sensor chip and reader.In this way,the temperature sensor can realize both a high precision and battery-free operation.The temperature sensing chip is fabricated in 55 nm CMOS process,and the reader chip is imple-mented in 65 nm CMOS technology.Experimental results show that the temperature measurement error achieves±1.6℃ from 25 to 50℃,with battery-free readout by a remote reader. 展开更多
关键词 food monitoring temperature sensor battery-free power harvesting bidirectional communication
在线阅读 下载PDF
Role of disturbance coefficient in monitoring and treatment of cerebral edema in patients with cerebral hemorrhage 被引量:1
17
作者 Wen-Wen Gao Xiao-Bing Jiang +9 位作者 Peng Chen Liang Zhang Lei Yang Zhi-Hai Yuan Yao Wei Xiao-Qiang Li Xiao-Lu Tang Feng-Lu Wang Hao Wu Hai-Kang Zhao 《World Journal of Clinical Cases》 2025年第14期16-24,共9页
BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral... BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral cerebral edema,but cannot realize quantification.When patients have symptoms of diffuse cerebral edema or high cranial pressure,CT or MRI often suggests that cerebral edema is lagging and cannot be dynamically monitored in real time.Intracranial pressure monitoring is the gold standard,but it is an invasive operation with high cost and complications.For clinical purposes,the ideal cerebral edema monitoring should be non-invasive,real-time,bedside,and continuous dynamic monitoring.The dis-turbance coefficient(DC)was used in this study to dynamically monitor the occu-rrence,development,and evolution of cerebral edema in patients with cerebral hemorrhage in real time,and review head CT or MRI to evaluate the development of the disease and guide further treatment,so as to improve the prognosis of patients with cerebral hemorrhage.AIM To offer a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.METHODS A total of 160 patients with hypertensive cerebral hemorrhage admitted to the Department of Neurosurgery,Second Affiliated Hospital of Xi’an Medical University from September 2018 to September 2019 were recruited.The patients were randomly divided into a control group(n=80)and an experimental group(n=80).Patients in the control group received conventional empirical treatment,while those in the experimental group were treated with mannitol dehydration under the guidance of DC.Subsequently,we compared the two groups with regards to the total dosage of mannitol,the total course of treatment,the incidence of complications,and prognosis.RESULTS The mean daily consumption of mannitol,the total course of treatment,and the mean hospitalization days were 362.7±117.7 mL,14.8±5.2 days,and 29.4±7.9 in the control group and 283.1±93.6 mL,11.8±4.2 days,and 23.9±8.3 in the experimental group(P<0.05).In the control group,there were 20 patients with pulmonary infection(25%),30 with electrolyte disturbance(37.5%),20 with renal impairment(25%),and 16 with stress ulcer(20%).In the experimental group,pulmonary infection occurred in 18 patients(22.5%),electrolyte disturbance in 6(7.5%),renal impairment in 2(2.5%),and stress ulcers in 15(18.8%)(P<0.05).According to the Glasgow coma scale score 6 months after discharge,the prognosis of the control group was good in 20 patients(25%),fair in 26(32.5%),and poor in 34(42.5%);the prognosis of the experimental group was good in 32(40%),fair in 36(45%),and poor in 12(15%)(P<0.05).CONCLUSION Using DC for non-invasive dynamic monitoring of cerebral edema demonstrates considerable clinical potential.It reduces mannitol dosage,treatment duration,complication rates,and hospital stays,ultimately lowering hospital-ization costs.Additionally,it improves overall patient prognosis,offering a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment. 展开更多
关键词 Noninvasive cerebral edema monitor Disturbance coefficient HYPERTENSION Cerebral hemorrhage Cerebral edema MANNITOL
暂未订购
A review of intelligent technologies for underground construction and infrastructure maintenance 被引量:1
18
作者 Weiqiang Xie Wenzhao Meng Wei Wu 《Intelligent Geoengineering》 2025年第1期22-34,共13页
Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review cover... Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering. 展开更多
关键词 Underground construction Infrastructure maintenance In-situ testing Intelligent monitoring Geophysical investigation
在线阅读 下载PDF
Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand 被引量:1
19
作者 ZHANG Jing LI Xuejian +2 位作者 LI Gang YUAN Ye YANG Dong 《Journal of Southeast University(English Edition)》 2025年第1期44-50,共7页
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ... To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring. 展开更多
关键词 steel strand ultrasonic guided wave plateau frequency mode separation stress monitoring
在线阅读 下载PDF
Roof deformation of the Beishan Rock Carvings with negative Poisson's ratio anchor support under varied precipitation conditions 被引量:1
20
作者 YANG Peixi TAO Zhigang +1 位作者 YANG Xiaojie LI Xiaodan 《Journal of Mountain Science》 2025年第8期3078-3091,共14页
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C... Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures. 展开更多
关键词 Grotto stability Physical model experiment RAINFALL NPR anchor(cable) On-site monitoring
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部