期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Extending OpenStack Monasca for Predictive Elasticity Control
1
作者 Giacomo Lanciano Filippo Galli +2 位作者 Tommaso Cucinotta Davide Bacciu Andrea Passarella 《Big Data Mining and Analytics》 EI CSCD 2024年第2期315-339,共25页
Traditional auto-scaling approaches are conceived as reactive automations,typically triggered when predefined thresholds are breached by resource consumption metrics.Managing such rules at scale is cumbersome,especial... Traditional auto-scaling approaches are conceived as reactive automations,typically triggered when predefined thresholds are breached by resource consumption metrics.Managing such rules at scale is cumbersome,especially when resources require non-negligible time to be instantiated.This paper introduces an architecture for predictive cloud operations,which enables orchestrators to apply time-series forecasting techniques to estimate the evolution of relevant metrics and take decisions based on the predicted state of the system.In this way,they can anticipate load peaks and trigger appropriate scaling actions in advance,such that new resources are available when needed.The proposed architecture is implemented in OpenStack,extending the monitoring capabilities of Monasca by injecting short-term forecasts of standard metrics.We use our architecture to implement predictive scaling policies leveraging on linear regression,autoregressive integrated moving average,feed-forward,and recurrent neural networks(RNN).Then,we evaluate their performance on a synthetic workload,comparing them to those of a traditional policy.To assess the ability of the different models to generalize to unseen patterns,we also evaluate them on traces from a real content delivery network(CDN)workload.In particular,the RNN model exhibites the best overall performance in terms of prediction error,observed client-side response latency,and forecasting overhead.The implementation of our architecture is open-source. 展开更多
关键词 OPENSTACK MONITORING elasticity control auto-scaling predictive operations monasca
原文传递
红曲霉菌种选育及固态发酵法生产Monacolin K研究 被引量:15
2
作者 王伟平 王莉平 +1 位作者 彭其安 梁亮 《中国酿造》 CAS 北大核心 2006年第8期21-23,共3页
以紫红曲霉(Monascus purpureus)No.1为出发菌株,对该菌受制霉菌素影响的情况进行了研究,经紫外线诱变筛选得到1株具有稳定遗传性状的抗药性突变株AS.12,并对其产Monacolin K的发酵条件进行了摸索和研究,结果表明,在最佳的发酵条件下,... 以紫红曲霉(Monascus purpureus)No.1为出发菌株,对该菌受制霉菌素影响的情况进行了研究,经紫外线诱变筛选得到1株具有稳定遗传性状的抗药性突变株AS.12,并对其产Monacolin K的发酵条件进行了摸索和研究,结果表明,在最佳的发酵条件下,物料厚度4cm,初始含水量50%,温度28℃,发酵12d,Monacolin K含量达2.186mg/g红曲干粉。 展开更多
关键词 紫红曲霉 洛伐他汀 紫外诱变 固态发酵 发酵工艺条件
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部