Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra ...Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.展开更多
A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s...A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s scheme was included to improve the theoretical model proposed by Tan and Wu (1993). The model could keep the same complexity as the classical Ekman model in numerical, but extends the conventional Ekman model to include the horizontal accelerated flow with the Ekman momentum approximation. A comparison between this modified Ekman model and other simplified accelerating PBL models is made. Results show that the Ekman model overestimates (underestimates) the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow due to the neglect of the acceleration flow, however, the semi–geostrophic Ekman model overestimates the acceleration effects resulting from the underestimating (overestimating) of the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow. The Ekman momentum approximation boundary layer model could be applied to the baroclinic atmosphere. The baroclinic Ekman momentum approximation boundary layer solution has both features of classical baroclinic Ekman layer and the Ekman momentum approximate boundary lager.展开更多
To consider the angular momentum and parity conservation the angular mo-mentum (J) and parity (π) should be addressed in the master equation of the excitonmodel.Therefore the internal transition rates and the emissio...To consider the angular momentum and parity conservation the angular mo-mentum (J) and parity (π) should be addressed in the master equation of the excitonmodel.Therefore the internal transition rates and the emission rates must be Jπ depen-dent.The angular momentum factor of the internal transition rates is given and the an-gular momentum conservation effect is discussed.展开更多
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b...PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.展开更多
The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed...The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoil modified to be flexible at 150 from the main blade axis of the turbine at the trailing edge located about 70 % of the blade chord length using fluent solving Reynolds average Navier-strokes equation. The results obtained from DMST model and the simulation results were then compared. The result shows that the CFD simulation with airfoil modified has shown better performance at low tip speed ratios for the modeled turbine.展开更多
The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled m...The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.展开更多
In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the...In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.展开更多
Based on the theoretical models for light nuclei, the calculations of reaction cross sections and the angular distributions for d +^8Li reaction are performed. Since all of the particle emissions are from the compoun...Based on the theoretical models for light nuclei, the calculations of reaction cross sections and the angular distributions for d +^8Li reaction are performed. Since all of the particle emissions are from the compound nucleus to the discrete levels, the angular momentum coupling effect in pre-equilibrium mechanism is taken into account. The three- body break-up process and the recoil effect are involved. The theoretical calculated results are compared to existing experimental data.展开更多
The transverse momentum distribution and the transverse mass distribution of charged hadrons produced in nucleus nucleus collisions at high energies are described by using a two-cylinder model. The results calculated ...The transverse momentum distribution and the transverse mass distribution of charged hadrons produced in nucleus nucleus collisions at high energies are described by using a two-cylinder model. The results calculated by the model are compared and found to be in agreement with the experimental data of the STAR and E895 Collaborations, measured in A^Au collisions at the relativistic heavy ion collider (RHIC) and alternating-gradient synchrotron (AGS) energies, respectively. In the energy range concerned, the excitation degree of emission source close to the central axis of cylinders increases obviously with the collision centrality and incident energy increasing, but it does not show any obvious change with the increase of the (pseudo)rapidity in central collisions. The excitation degree of emission source close to the side-surface of cylinders does not show any obvious change with the collision centrality, the (pseudo)rapidity, and the incident energy increasing.展开更多
Since stack effect that occurs in high-rise buildings has an effect on the indoor environment of the buildings, energy loss and smoke control in case of a fire, there is a need to conduct research on this. For an anal...Since stack effect that occurs in high-rise buildings has an effect on the indoor environment of the buildings, energy loss and smoke control in case of a fire, there is a need to conduct research on this. For an analysis of the stack effect, analysis methods on the leakage flow through gap of interior door shall be formulated. Until now, studies related to the gap leakage flow in buildings have mainly analyzed flow field and pressure in the buildings one-dimensionally using pressure difference-leakage flowrate relations of Orifice Equation and a network numerical analysis algorithm that as- sumes each compartment in the buildings as a single point. In this study, the Momentum Loss Model which enables pressure drop to be proportional to the flow velocity through the gap of door in computational domain of 3-dimensional numerical analysis was proposed to reflect the gap flow phenomenon effectively in 3-dimensional numerical analysis. Using the proposed model, 3-dimensional numerical analysis of the stack effect on the stairs in buildings was performed, and the effects of separation door and lobby between stair and accommodation on the stack effect were investigated.展开更多
According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied...According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model.展开更多
The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological...The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological Agency (JMA), from the reanalysis data of the National Centers for the Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), and from the operational objective analysis data of JMA, respectively. The comparison shows that during the period from 1985 to 1995, the values of the pressure terms in the equatorial components of AAM functions calculated from three data sets agree with each other better along 90°E longitude than along Greenwich meridian direction. The axial component of relative AAM function estimated from GSM 9603 agrees well with those from the other two data sets in terms of seasonal variations with the moderate amplitudes, but not so well with the composite axial component of relative AAM functions estimated from 23 GCM models anticipating in the first phase of AMIP. In addition, its interannual variation from 1979 to 1996 shows the main characteristics of ENSO evolution, just as does the axial component of relative AAM function estimated from NCEP reanalysis data except for the period of anomalous ENSO from 1991 to 1993.展开更多
The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom...The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.展开更多
In 1937, P. Dirac proposed the Large Number Hypothesis and Hypothesis of Variable Gravitational Constant [1], and later added notion of Continuous Creation of Matter in the World [2]. Developed Hypersphere World-Unive...In 1937, P. Dirac proposed the Large Number Hypothesis and Hypothesis of Variable Gravitational Constant [1], and later added notion of Continuous Creation of Matter in the World [2]. Developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium;2) Laniakea Supercluster with binding mass ~10<sup>17</sup>M<sub>⊙</sub> is home to Milky Way (MW) galaxy and ~10<sup>5</sup> other nearby galaxies, which did not start their movement from Initial Singularity (see Figure 1);3) MW is gravitationally bounded with Virgo Supercluster (VSC) and has Orbital Angular Momentum calculated based on distance of 65 Mly from VSC and orbital speed of ~400 km·s<sup>-1</sup>, which far exceeds rotational angular momentum of MW;4) Mass-to-light ratio of VSC is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters (see Figure 2). These ratios are main arguments in favor of the presence of tremendous amounts of Dark Matter (DM) in the World. JWST discoveries confirm the most important predictions of WUM in 2018: 1) Absolute Age of World is 14.22 Gyr;2) Dark Epoch (spanning for Laniakea Supercluster (LSC) from the Beginning of World for 0.45 Gyr) when only DM Macroobjects (MOs) form and evolve;3) Luminous Epoch (ever since, 13.77 Gyr for LSC) when Luminous MOs (superclusters, galaxies, extrasolar systems, etc.) emerge;4) Transition from Dark Epoch to Luminous Epoch is due to Explosive Rotational Fission of Overspinning (surface speed at equator exceeding escape velocity) DM Supercluster’s Cores and self-annihilation of DM Particles (DMPs);5) MOs of World form from top (Superclusters) down to Galaxies and Extrasolar systems in parallel around different Cores made up of different DMPs;6) 3D Finite Boundless World presents a Patchwork Quilt of different Luminous Superclusters, which emerged in different places of World at different Cosmological times.展开更多
According to “Evolution Encyclopedia” (The Origin of the Solar System), “There is no possible means by which the angular momentum from the sun could be transferred to the planets”. Yet this is what would have to b...According to “Evolution Encyclopedia” (The Origin of the Solar System), “There is no possible means by which the angular momentum from the sun could be transferred to the planets”. Yet this is what would have to be done if any of the evolutionary theories of solar system origin are to be accepted. Scientists cannot account for this puzzling situation: less than one percent of the mass of the solar system is in the planets, while a staggering 98 percent of its angular momentum is in them. It simply does not fit into any of the cosmologies. Speaking of the mass-angular momentum problem, D. Bergamini says: “A theory of evolution that fails to account for this peculiar fact is ruled out before it starts” [1]. Angular Momentum problem is one of the most critical problems in Standard model that must be solved. To the best of our knowledge, the developed Hypersphere World-Universe Model (WUM) is only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum [2]. In the present paper, we discuss Angular Momenta of Solar System, Milky Way galaxy, and Superclusters in frames of WUM.展开更多
This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the ...This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
基金supported by the Science and Technology Development Foundation of CAEP(No.2015B0103014)the National Natural Science Foundation of China(No.11605163)
文摘Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.
基金National Key Basic Research Project: Research on the FormationMechanism and Predication Theory of severe synoptic Disasters in
文摘A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s scheme was included to improve the theoretical model proposed by Tan and Wu (1993). The model could keep the same complexity as the classical Ekman model in numerical, but extends the conventional Ekman model to include the horizontal accelerated flow with the Ekman momentum approximation. A comparison between this modified Ekman model and other simplified accelerating PBL models is made. Results show that the Ekman model overestimates (underestimates) the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow due to the neglect of the acceleration flow, however, the semi–geostrophic Ekman model overestimates the acceleration effects resulting from the underestimating (overestimating) of the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow. The Ekman momentum approximation boundary layer model could be applied to the baroclinic atmosphere. The baroclinic Ekman momentum approximation boundary layer solution has both features of classical baroclinic Ekman layer and the Ekman momentum approximate boundary lager.
文摘To consider the angular momentum and parity conservation the angular mo-mentum (J) and parity (π) should be addressed in the master equation of the excitonmodel.Therefore the internal transition rates and the emission rates must be Jπ depen-dent.The angular momentum factor of the internal transition rates is given and the an-gular momentum conservation effect is discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50835006 and 51005161)the Science & Technology Support Planning Foundation of Tianjin(Grant No. 09ZCKFGX03000)the Natural Science Foundation of Tianjin(Grant No. 09JCZDJC23400)
文摘PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
文摘The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoil modified to be flexible at 150 from the main blade axis of the turbine at the trailing edge located about 70 % of the blade chord length using fluent solving Reynolds average Navier-strokes equation. The results obtained from DMST model and the simulation results were then compared. The result shows that the CFD simulation with airfoil modified has shown better performance at low tip speed ratios for the modeled turbine.
基金supported by the National Natural Science Foundation of China(41176073)
文摘The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
基金Supported by the Chinese Postdoctoral Science Foundation, the Young Scientists Funds of NSF of China (10401019)the Tsinghua Basic Research Foundation.
文摘In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.
基金supported by IAEA Coordinated Research Projects (CRPs) on Parameters for Calculation of Nuclear Reactions of Relevance to Non-energy Nuclear Applications under Grant No.12842/R2
文摘Based on the theoretical models for light nuclei, the calculations of reaction cross sections and the angular distributions for d +^8Li reaction are performed. Since all of the particle emissions are from the compound nucleus to the discrete levels, the angular momentum coupling effect in pre-equilibrium mechanism is taken into account. The three- body break-up process and the recoil effect are involved. The theoretical calculated results are compared to existing experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos 10675077 and 10275042)the Shanxi Provincial Natural Science Foundation of China (Grant No 2007011005)the Shanxi Provincial Foundation of China for Returned Overseas Scholars
文摘The transverse momentum distribution and the transverse mass distribution of charged hadrons produced in nucleus nucleus collisions at high energies are described by using a two-cylinder model. The results calculated by the model are compared and found to be in agreement with the experimental data of the STAR and E895 Collaborations, measured in A^Au collisions at the relativistic heavy ion collider (RHIC) and alternating-gradient synchrotron (AGS) energies, respectively. In the energy range concerned, the excitation degree of emission source close to the central axis of cylinders increases obviously with the collision centrality and incident energy increasing, but it does not show any obvious change with the increase of the (pseudo)rapidity in central collisions. The excitation degree of emission source close to the side-surface of cylinders does not show any obvious change with the collision centrality, the (pseudo)rapidity, and the incident energy increasing.
文摘Since stack effect that occurs in high-rise buildings has an effect on the indoor environment of the buildings, energy loss and smoke control in case of a fire, there is a need to conduct research on this. For an analysis of the stack effect, analysis methods on the leakage flow through gap of interior door shall be formulated. Until now, studies related to the gap leakage flow in buildings have mainly analyzed flow field and pressure in the buildings one-dimensionally using pressure difference-leakage flowrate relations of Orifice Equation and a network numerical analysis algorithm that as- sumes each compartment in the buildings as a single point. In this study, the Momentum Loss Model which enables pressure drop to be proportional to the flow velocity through the gap of door in computational domain of 3-dimensional numerical analysis was proposed to reflect the gap flow phenomenon effectively in 3-dimensional numerical analysis. Using the proposed model, 3-dimensional numerical analysis of the stack effect on the stairs in buildings was performed, and the effects of separation door and lobby between stair and accommodation on the stack effect were investigated.
文摘According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model.
基金the National Natural Science Foundation of China under Grant Nos. 49904002 and 40074004, the National Climbing Project of China
文摘The atmospheric angular momentum (AAM) functions in terms of contribution to polar wobble and length of day change, are calculated from the output data of GSM9603 global circulation model (GCM) of Japan Meteorological Agency (JMA), from the reanalysis data of the National Centers for the Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), and from the operational objective analysis data of JMA, respectively. The comparison shows that during the period from 1985 to 1995, the values of the pressure terms in the equatorial components of AAM functions calculated from three data sets agree with each other better along 90°E longitude than along Greenwich meridian direction. The axial component of relative AAM function estimated from GSM 9603 agrees well with those from the other two data sets in terms of seasonal variations with the moderate amplitudes, but not so well with the composite axial component of relative AAM functions estimated from 23 GCM models anticipating in the first phase of AMIP. In addition, its interannual variation from 1979 to 1996 shows the main characteristics of ENSO evolution, just as does the axial component of relative AAM function estimated from NCEP reanalysis data except for the period of anomalous ENSO from 1991 to 1993.
文摘The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.
文摘In 1937, P. Dirac proposed the Large Number Hypothesis and Hypothesis of Variable Gravitational Constant [1], and later added notion of Continuous Creation of Matter in the World [2]. Developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium;2) Laniakea Supercluster with binding mass ~10<sup>17</sup>M<sub>⊙</sub> is home to Milky Way (MW) galaxy and ~10<sup>5</sup> other nearby galaxies, which did not start their movement from Initial Singularity (see Figure 1);3) MW is gravitationally bounded with Virgo Supercluster (VSC) and has Orbital Angular Momentum calculated based on distance of 65 Mly from VSC and orbital speed of ~400 km·s<sup>-1</sup>, which far exceeds rotational angular momentum of MW;4) Mass-to-light ratio of VSC is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters (see Figure 2). These ratios are main arguments in favor of the presence of tremendous amounts of Dark Matter (DM) in the World. JWST discoveries confirm the most important predictions of WUM in 2018: 1) Absolute Age of World is 14.22 Gyr;2) Dark Epoch (spanning for Laniakea Supercluster (LSC) from the Beginning of World for 0.45 Gyr) when only DM Macroobjects (MOs) form and evolve;3) Luminous Epoch (ever since, 13.77 Gyr for LSC) when Luminous MOs (superclusters, galaxies, extrasolar systems, etc.) emerge;4) Transition from Dark Epoch to Luminous Epoch is due to Explosive Rotational Fission of Overspinning (surface speed at equator exceeding escape velocity) DM Supercluster’s Cores and self-annihilation of DM Particles (DMPs);5) MOs of World form from top (Superclusters) down to Galaxies and Extrasolar systems in parallel around different Cores made up of different DMPs;6) 3D Finite Boundless World presents a Patchwork Quilt of different Luminous Superclusters, which emerged in different places of World at different Cosmological times.
文摘According to “Evolution Encyclopedia” (The Origin of the Solar System), “There is no possible means by which the angular momentum from the sun could be transferred to the planets”. Yet this is what would have to be done if any of the evolutionary theories of solar system origin are to be accepted. Scientists cannot account for this puzzling situation: less than one percent of the mass of the solar system is in the planets, while a staggering 98 percent of its angular momentum is in them. It simply does not fit into any of the cosmologies. Speaking of the mass-angular momentum problem, D. Bergamini says: “A theory of evolution that fails to account for this peculiar fact is ruled out before it starts” [1]. Angular Momentum problem is one of the most critical problems in Standard model that must be solved. To the best of our knowledge, the developed Hypersphere World-Universe Model (WUM) is only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum [2]. In the present paper, we discuss Angular Momenta of Solar System, Milky Way galaxy, and Superclusters in frames of WUM.
文摘This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.