The catalytic properties of MoOx and incorporation Ni onto the MoOx for the isomerization of heptane have been investigated under atmospheric pressure at different conditions such as different flow rate of H2, differe...The catalytic properties of MoOx and incorporation Ni onto the MoOx for the isomerization of heptane have been investigated under atmospheric pressure at different conditions such as different flow rate of H2, different reaction temperature etc.. Compared with MoOx, the Ni addition to the MoOx markedly improved the isomerization activity of heptane by improving the reducibility of MoO3 and activation of H2 in reaction.展开更多
The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)s...The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.展开更多
Benefitting from higher specific capacities,acceptable cost,nontoxicity and unique crystal structures,the molybdenum oxides have been studied as the anode materials for lithium ion batteries(LIBs).Herein,a direct curr...Benefitting from higher specific capacities,acceptable cost,nontoxicity and unique crystal structures,the molybdenum oxides have been studied as the anode materials for lithium ion batteries(LIBs).Herein,a direct current(DC)arc-discharge plasma technique has been developed to in-situ synthesize carboncoated monocrystal molybdenum oxides((MoO3NRs/MoO2NPs)@C)nanocomposites,using coarse MoO_(3) bulk as the raw material and methane(CH4)gas as the carbon source.It is indicated that crystallographic traits of MoO_(3) and MoO2 nuclei give rise to an anisotropic growth of monocrystal MoO3 nanorods(NRs)along<100>direction and an isotropic growth of monocrystal MoO_(2) nanoparticles(NPs).The carbon shells on MoO3/MoO2 nanostructures are generated from the absorption of carbon atoms in surrounding atmosphere or the release of supersaturated carbon atoms in MoeOeC solid solution.Unique constitution and pseudo-capacitive behavior of(MoO3NRs/MoO2NPs)@C bring merits to excellent cycling performance and rate capability,i.e.a remarkable specific capacity of 840 mAh·g^(-1) after 100 cycles at a current density of 0.1 Ag^(-1) and a retained capacity of 210 mAh·g^(-1) at 6.4 A g^(-1).This work has offered a simple and efficient approach to fabricate the carbon-coated molybdenum oxides nanostructures for promising anode materials of LIBs。展开更多
Molybdenum oxide nanoparticles(NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and de...Molybdenum oxide nanoparticles(NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and defective structures such as oxygen deficiencies. However,fundamental understanding on the structure-function relationship between crystalline/defective structures and photothermal properties is still unclear. To address this, herein,we have developed an "in-situ confined oxidation-reduction"strategy to regulate the defect features of molybdenum oxide NPs in the dual-mesoporous silica nanoreactor. Especially, the effects of crystalline structure/oxygen defects of molybdenum oxides on the photothermal performances were investigated by facilely tuning the amount of molybdenum resource and the reduction temperature. As a photothermal nanoagent, the optimal defective molybdenum oxide NPs encapsulated in PEGylated porous silica nanoreactor(designated as MoO_(3)@PPSNs) exhibit excellent biological stability and strong localized surface plasmon resonance effect in nearinfrared absorption range with the highest photothermal conversion efficiency up to 78.7% under 808 nm laser irradiation. More importantly, the remarkable photothermal effects of MoO_(3)@PPSNs were comprehensively demonstrated both in vitro and in vivo. Consequently, we envision that the plasmonic MoO_(3)NPs in a biocompatible porous silica nanoreactor could be used as an efficient photothermal therapy agent for photothermal ablation of tumors.展开更多
Oxidative desulfurization(ODS)is a promising technology to produce clean fuel with requiring superior catalysts to lower kinetic barriers.Although most ODS catalysts are based on crystalline transition-metal oxides(TM...Oxidative desulfurization(ODS)is a promising technology to produce clean fuel with requiring superior catalysts to lower kinetic barriers.Although most ODS catalysts are based on crystalline transition-metal oxides(TMOs),extraordinary activity also can be achieved with amorphous TMOs.However,the origin of the remarkable catalytic activity of the amorphous TMOs remains greatly ambiguous.Here,we found the crucial role of Mo–O covalency in ruling the intrinsic catalytic activity of amorphous molybdenum oxides(MoO_(x)).Experimental and theoretical analysis indicated that the nonequivalent connectivity in the amorphous structure strongly enhanced Mo–O covalency,thereby increasing the content of electrophilic oxygen and nucleophilic molybdenum to favor the MoO_(x)–H_(2)O_(2) interaction.With the boosted Mo–O covalency to improve the flexibility of the charge state,the amorphous MoO_(x)-based composite catalyst(PE-MoO_(x)/S-0.05)exhibited outstanding catalytic activity for ODS of fuel oil.The turnover frequency(TOF)value of the catalyst(18.63 h^(-1))was almost an order of magnitude higher than that of most reported crystalline MoO_(x)/molecular sieve composite catalysts.The in-depth understanding of the origin of the amorphous TMOs activity for ODS provides a valuable reference for developing ODS catalysts.展开更多
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for vis...A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for visible light among all metals, yet its hole-injection properties are not ideal for anodes of top-emitting OLED. The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag. By introducing the molybdenum oxide, the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.展开更多
Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency(RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycry...Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency(RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis.The resistivity first decreases and then increases with the increase in MoO3 content.The lowest resistivity achieved is 9.2 × 10^-4.cm,with a high Hall mobility of 30 cm^2.V-1.s-1 and a carrier concentration of 2.3×10^20 cm^-3 at an MoO3 content of 2 wt%.The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO3 content in the target.展开更多
The hole transport layer(HTL)affects the device performance and stability of organic solar cells.In this work,a stable molybdenum oxide(MoO_(x))hole transport layer with low cost was prepared by adjusting the state of...The hole transport layer(HTL)affects the device performance and stability of organic solar cells.In this work,a stable molybdenum oxide(MoO_(x))hole transport layer with low cost was prepared by adjusting the state of the precursor solution with an alcoholic solution of molybdenum acetylacetonate through an oxidant.The MoO_(x) transport layer has good transmittance with a work function of 5.07 eV and higher surface energy.The PM6:Y6 devices using MoO_(x) HTL achieve a high efficiency of 16.8%.MoO_(x) HTL exhibits good applicability with excellent performance in both ternary and all-polymer systems.Air storage stability T80 of the all-polymer device using MoO_(x) HTL was over 600 h,much higher than 70 h of the PEDOT:PSS-based device,and its thermal stability at 85℃ and operational stability under light show better stability than that of the PEDOT:PSS hole transport layer.This work provides a facile and low-cost method to fabricate HTL for organic solar cells,which is beneficial to improve their efficiency and stability.展开更多
The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concen...The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.展开更多
Molybdenum-based catalysts for the gas-phase oxidation of propylene with air were investigated. Various types of silica-supported molybdenum oxide and molybdenum-bismuth mixed oxide cata- lysts were prepared from inor...Molybdenum-based catalysts for the gas-phase oxidation of propylene with air were investigated. Various types of silica-supported molybdenum oxide and molybdenum-bismuth mixed oxide cata- lysts were prepared from inorganic and organometallic molybdenum precursors using wet impregnation and physical vapor deposition methods. The epoxidation activities of the prepared cata- lysts showed direct correlations with their nanostructures, which were identified using transmission electron microscopy. The appearance of a partly or fully crystalline molybdenum oxide phase, which interacted poorly with the silica support, decreased the selectivity for propylene oxide for- mation to below 10%; non-crystalline octahedrally coordinated molybdenum species anchored on the support gave propylene oxide formations greater than 55%, with 11% propylene conversion. Electrochemical characterization of molybdenum oxides with various morphologies showed the importance of structural defects. Direct promotion by bismuth of the epoxidation reactivities over molybdenum oxides is disputed.展开更多
The large energy barrier in hole extraction still remains a great challenge in developing hole transporting layer (HTL) materials for organic solar cells (OSCs).Thus,solution-processed HTL materials with excellent hol...The large energy barrier in hole extraction still remains a great challenge in developing hole transporting layer (HTL) materials for organic solar cells (OSCs).Thus,solution-processed HTL materials with excellent hole collection ability and good compatibility with large-area processing technique are strongly desired for OSCs.Herein,we developed a cost-effective and solution-processed MoO_(3)HTL for efficient OSCs.By adding a small amount of glucose as reducing reagent into the ammonium molybdate precursor solution,a deeply n-doped MoO_(3),namely G:Mo,was prepared through the sol–gel method.Compared to pristine MoO_(3),the conductivity of G:Mo was enhanced by two orders of magnitude,which greatly improved the hole collection ability of the HTL.OSCs with G:Mo can exhibit comparable PCE to the PEDOT:PSS device.Using PBDB-TF:BTP-eC9 as the active layer,a PCE of 17.1%is obtained for the device,which is the highest PCE value for OSC using a solution-processed MoO_(3)HTL.More importantly,G:Mo is well compatible with the blade-coating processing.The OSC using a blade-coated G:Mo showed almost no PCE loss as compared to the device with spin-coated G:Mo HTL.The results from this work indicate that G:Mo is a promising HTL material for the practical production of OSCs.展开更多
Polymeric systems have played an important role as structure-directing agents and in the control of nucleation and growth of crystals.This article reviews the work of our research group in the field of the polymer-ass...Polymeric systems have played an important role as structure-directing agents and in the control of nucleation and growth of crystals.This article reviews the work of our research group in the field of the polymer-assisted crystallization of inorganic materials,mainly focused on the formation of highly ordered,porous molybdenum oxide nanostructures.Different experimental parameters including the influence of poly(ethylene oxide)-containing polymers on the morphology and structure of the products obtained fr...展开更多
The synthesized near infrared molybdenum oxide quantum dots perform excellent red fluorescence imaging performance and photothermal performance,which have 600,650 and 700 nm three unique peaks excited at 540 nm,with a...The synthesized near infrared molybdenum oxide quantum dots perform excellent red fluorescence imaging performance and photothermal performance,which have 600,650 and 700 nm three unique peaks excited at 540 nm,with a high quantum yield around 20%.Meanwhile,with 808 nm NIR laser excitation,10 mg/mL modified Molybdenum oxide quantum dots can increase temperature up to 72.2℃within 150 s and 77.7℃within 270 s,respectively.展开更多
The performance of supported and unsupported molybdenum carbide for thepartial oxidation of methane (POM) to syngas was investigated. An evaluation of the catalystsindicates that bulk molybdenum carbide has a higher m...The performance of supported and unsupported molybdenum carbide for thepartial oxidation of methane (POM) to syngas was investigated. An evaluation of the catalystsindicates that bulk molybdenum carbide has a higher methane conversion during the initial stage buta lower selectivity to CO and H_2/CO ratio in the products. The rapid deactivation of the catalystis also a significant problem. However, the supported molybdenum carbide catalyst shows a muchhigher methane conversion, increased selectivity and significantly improved catalytic stability. Thecharacterization by XRD and BET specific area measurements depict an improved dispersion ofmolybdenum carbide when using alumina as a carrier. The bulk or the supported molybdenum carbideexists in the β-MO_2C phase, while it is transformed into molybdenum dioxide postcatalysis which isan important cause of molybdenum carbide deactivation.展开更多
Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency(RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycryst...Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency(RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis.The resistivity first decreases and then increases with the increase in MoO3 content.The lowest resistivity achieved is 9.2 × 10-4.cm,with a high Hall mobility of 30 cm2.V-1.s-1 and a carrier concentration of 2.3×1020 cm-3 at an MoO3 content of 2 wt%.The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO3 content in the target.展开更多
A new method of preparing electrical conductive molybdenum oxide by thermal decomposition from hydrazine-containing molybdenum salt was described.The process of the thermal decomposition of hydrazine- containing molyb...A new method of preparing electrical conductive molybdenum oxide by thermal decomposition from hydrazine-containing molybdenum salt was described.The process of the thermal decomposition of hydrazine- containing molybdemum salt was investigated by thermal analysis(TG and DTA) and the thermally decomposed product was studied by S.E.M.and chemical analysis.The result indicated that the molybdenum oxide obtained in this way was electrical conductive.展开更多
Recent years has seen increasing interest in building artificial synaptic devices to emulate the computation performed by biological synapses.Biological synapses are functional links between neurons,through which info...Recent years has seen increasing interest in building artificial synaptic devices to emulate the computation performed by biological synapses.Biological synapses are functional links between neurons,through which information is transmitted in the neuron network.The information can be stored and processed simultaneously in the same synapse through tuning synaptic weight,which is defined as the strength of the correlation between展开更多
Rechargeable aqueous Zn-MoO_(x)batteries are promising energy storage devices with high theoretical specific capacity and low cost.However,MoO_(3)cathodes suffer drastic capacity decay during the initial discharging/c...Rechargeable aqueous Zn-MoO_(x)batteries are promising energy storage devices with high theoretical specific capacity and low cost.However,MoO_(3)cathodes suffer drastic capacity decay during the initial discharging/charging process in conventional electrolytes,resulting in a short cycle life and challenging the development of Zn-MoO_(x)batteries.Here we comprehensively investigate the dissolution mechanism of MoO_(3)cathodes and innovatively introduce a polymer to inhibit the irreversible processes.Our findings reveal that this capacity decay originates from the irreversible Zn^(2+)/H^(+)co-intercalation/extraction process in aqueous electrolytes.Even worse,during Zn^(2+)intercalation,the formed Zn_(x)MoO_(3-x)intermediate phase with lower valence states(Mo^(5+)/Mo^(4+))experiences severe dissolution in aqueous environments.To address these challenges,we developed a first instance of coating a polyaniline(PANI)shell around the MoO_(3)nanorod effectively inhibiting these irreversible processes and protecting structural integrity during long-term cycling.Detailed structural analysis and theoretical calculations indicate that=N-groups in PANI@MoO_(3-x)simultaneously weaken H+adsorption and enhance Zn^(2+)adsorption,which endowed the PANI@MoO_(3-x)cathode with reversible Zn^(2+)/H^(+)intercalation/extraction.Consequently,the obtained PANI@MoO_(3-x)cathode delivers an excellent discharge capacity of 316.86 mA h g^(-1)at 0.1 A g^(-1)and prolonged cycling stability of 75.49%capacity retention after 1000 cycles at 5 A g^(-1).This work addresses the critical issues associated with MoO_(3)cathodes and significantly advances the understanding of competitive multi-ion energy storage mechanisms in aqueous Zn-MoO_(3)batteries.展开更多
The MoOx/AuNPs composite film modified glassy carbon electrode was fabricated by electro-depositing simultaneously gold nanoparticles and molybdenum oxides using cyclic voltammetry. The morphology and topography of th...The MoOx/AuNPs composite film modified glassy carbon electrode was fabricated by electro-depositing simultaneously gold nanoparticles and molybdenum oxides using cyclic voltammetry. The morphology and topography of the MoOx/AuNPs composite were char-acterized by scan electron microscopy and X-ray photoelectron spectroscopy respectively, and the electrocatalytic oxidation of glucose at the MoOx/AuNPs composite film was inves-tigated and analyzed in detail. It was shown that the MoOx/AuNPs composite was of strong electrocatalytic activity towards oxidation of glucose as well as other saccharides, so that an attempt was made for direct voltammetric determination of glucose. Then the positive scan polarization reverse catalytic voltammetry was proposed for the first time. Based on this method, the pure oxidation current was extracted by subtraction of the blank current in the reverse scan. The current sensitivity was enhanced tremendously and the signal to noise ra-tio was improved adequately. The electrocatalytic oxidation of glucose at the MoOx/AuNPs modified electrode was performed in alkaline medium, a wide linear range from 0.01 mmol/L to 4.0 mmol/L of glucose, a higher current sensitivity of 2.35 mA/(mmol/L·cm2), and a lower limit of detection of 9.01 μmol/L (at signal/noise=3) were achieved. In addition, the electrocatalytic oxidation of other saccharides such as lactose, fructose and sucrose was also evaluated.展开更多
文摘The catalytic properties of MoOx and incorporation Ni onto the MoOx for the isomerization of heptane have been investigated under atmospheric pressure at different conditions such as different flow rate of H2, different reaction temperature etc.. Compared with MoOx, the Ni addition to the MoOx markedly improved the isomerization activity of heptane by improving the reducibility of MoO3 and activation of H2 in reaction.
文摘The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.
基金supported by the National Natural Science Foundation of China(No.U1908220)the Research Project of Shanxi Datong University,China.
文摘Benefitting from higher specific capacities,acceptable cost,nontoxicity and unique crystal structures,the molybdenum oxides have been studied as the anode materials for lithium ion batteries(LIBs).Herein,a direct current(DC)arc-discharge plasma technique has been developed to in-situ synthesize carboncoated monocrystal molybdenum oxides((MoO3NRs/MoO2NPs)@C)nanocomposites,using coarse MoO_(3) bulk as the raw material and methane(CH4)gas as the carbon source.It is indicated that crystallographic traits of MoO_(3) and MoO2 nuclei give rise to an anisotropic growth of monocrystal MoO3 nanorods(NRs)along<100>direction and an isotropic growth of monocrystal MoO_(2) nanoparticles(NPs).The carbon shells on MoO3/MoO2 nanostructures are generated from the absorption of carbon atoms in surrounding atmosphere or the release of supersaturated carbon atoms in MoeOeC solid solution.Unique constitution and pseudo-capacitive behavior of(MoO3NRs/MoO2NPs)@C bring merits to excellent cycling performance and rate capability,i.e.a remarkable specific capacity of 840 mAh·g^(-1) after 100 cycles at a current density of 0.1 Ag^(-1) and a retained capacity of 210 mAh·g^(-1) at 6.4 A g^(-1).This work has offered a simple and efficient approach to fabricate the carbon-coated molybdenum oxides nanostructures for promising anode materials of LIBs。
基金supported by the National Key Research and Development Program of China (2016YFA0203700)the National Natural Science Foundation of China (51672083, 51962022 and 52072124)+4 种基金the Natural Science Foundation of Shanghai (20ZR1414900)the Program of Shanghai Academic/Technology Research Leader (18XD1401400)the Leading Talents in Shanghai in 2018the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe 111 Project (B14018)。
文摘Molybdenum oxide nanoparticles(NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and defective structures such as oxygen deficiencies. However,fundamental understanding on the structure-function relationship between crystalline/defective structures and photothermal properties is still unclear. To address this, herein,we have developed an "in-situ confined oxidation-reduction"strategy to regulate the defect features of molybdenum oxide NPs in the dual-mesoporous silica nanoreactor. Especially, the effects of crystalline structure/oxygen defects of molybdenum oxides on the photothermal performances were investigated by facilely tuning the amount of molybdenum resource and the reduction temperature. As a photothermal nanoagent, the optimal defective molybdenum oxide NPs encapsulated in PEGylated porous silica nanoreactor(designated as MoO_(3)@PPSNs) exhibit excellent biological stability and strong localized surface plasmon resonance effect in nearinfrared absorption range with the highest photothermal conversion efficiency up to 78.7% under 808 nm laser irradiation. More importantly, the remarkable photothermal effects of MoO_(3)@PPSNs were comprehensively demonstrated both in vitro and in vivo. Consequently, we envision that the plasmonic MoO_(3)NPs in a biocompatible porous silica nanoreactor could be used as an efficient photothermal therapy agent for photothermal ablation of tumors.
基金supported by the National Natural Science Foundation of China(51978178,52270064,and 51521006)the Department of Science and Technology of Guangdong Province of China(2022A1515010226)+3 种基金the Program for Innovative Research Teams of Guangdong Higher Education Institutes of China(2021KCXTD043)Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes(KLGHEI 2017KSYS004)the Science and Technology Innovation Program of Hunan Province of China(2021RC2058)the Startup Fund of Guangdong University of Petrochemical Technology(2018rc63)。
文摘Oxidative desulfurization(ODS)is a promising technology to produce clean fuel with requiring superior catalysts to lower kinetic barriers.Although most ODS catalysts are based on crystalline transition-metal oxides(TMOs),extraordinary activity also can be achieved with amorphous TMOs.However,the origin of the remarkable catalytic activity of the amorphous TMOs remains greatly ambiguous.Here,we found the crucial role of Mo–O covalency in ruling the intrinsic catalytic activity of amorphous molybdenum oxides(MoO_(x)).Experimental and theoretical analysis indicated that the nonequivalent connectivity in the amorphous structure strongly enhanced Mo–O covalency,thereby increasing the content of electrophilic oxygen and nucleophilic molybdenum to favor the MoO_(x)–H_(2)O_(2) interaction.With the boosted Mo–O covalency to improve the flexibility of the charge state,the amorphous MoO_(x)-based composite catalyst(PE-MoO_(x)/S-0.05)exhibited outstanding catalytic activity for ODS of fuel oil.The turnover frequency(TOF)value of the catalyst(18.63 h^(-1))was almost an order of magnitude higher than that of most reported crystalline MoO_(x)/molecular sieve composite catalysts.The in-depth understanding of the origin of the amorphous TMOs activity for ODS provides a valuable reference for developing ODS catalysts.
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
基金supported by the National Natural Science Foundation of China (No.60425101)the Young Excellence Project of University of Electronic Science and Technology of China (No.UESTC-060206)the Fundamental Research Funds for the Central Universities of China (Nos.ZYGX2010Z004 and ZYGX2009J054)
文摘A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for visible light among all metals, yet its hole-injection properties are not ideal for anodes of top-emitting OLED. The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag. By introducing the molybdenum oxide, the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.
基金Project supported by the Science Foundation of the Education Commission of Shandong Province,China (Grant No. J10LA04)
文摘Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency(RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis.The resistivity first decreases and then increases with the increase in MoO3 content.The lowest resistivity achieved is 9.2 × 10^-4.cm,with a high Hall mobility of 30 cm^2.V-1.s-1 and a carrier concentration of 2.3×10^20 cm^-3 at an MoO3 content of 2 wt%.The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO3 content in the target.
基金the National Natural Science Foundation of China(No.21922505)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000).
文摘The hole transport layer(HTL)affects the device performance and stability of organic solar cells.In this work,a stable molybdenum oxide(MoO_(x))hole transport layer with low cost was prepared by adjusting the state of the precursor solution with an alcoholic solution of molybdenum acetylacetonate through an oxidant.The MoO_(x) transport layer has good transmittance with a work function of 5.07 eV and higher surface energy.The PM6:Y6 devices using MoO_(x) HTL achieve a high efficiency of 16.8%.MoO_(x) HTL exhibits good applicability with excellent performance in both ternary and all-polymer systems.Air storage stability T80 of the all-polymer device using MoO_(x) HTL was over 600 h,much higher than 70 h of the PEDOT:PSS-based device,and its thermal stability at 85℃ and operational stability under light show better stability than that of the PEDOT:PSS hole transport layer.This work provides a facile and low-cost method to fabricate HTL for organic solar cells,which is beneficial to improve their efficiency and stability.
基金Project(51364009) supported by the National Natural Science Foundation of ChinaProject(JSU071302) supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(2015JJ2115) supported by the Natural Science Foundation of Hunan Province,China
文摘The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.
基金A support by VEGA grant 2/0129/13 is acknowledged by I.V.
文摘Molybdenum-based catalysts for the gas-phase oxidation of propylene with air were investigated. Various types of silica-supported molybdenum oxide and molybdenum-bismuth mixed oxide cata- lysts were prepared from inorganic and organometallic molybdenum precursors using wet impregnation and physical vapor deposition methods. The epoxidation activities of the prepared cata- lysts showed direct correlations with their nanostructures, which were identified using transmission electron microscopy. The appearance of a partly or fully crystalline molybdenum oxide phase, which interacted poorly with the silica support, decreased the selectivity for propylene oxide for- mation to below 10%; non-crystalline octahedrally coordinated molybdenum species anchored on the support gave propylene oxide formations greater than 55%, with 11% propylene conversion. Electrochemical characterization of molybdenum oxides with various morphologies showed the importance of structural defects. Direct promotion by bismuth of the epoxidation reactivities over molybdenum oxides is disputed.
基金the National Natural Science Foundation of China (21875263)the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007)。
文摘The large energy barrier in hole extraction still remains a great challenge in developing hole transporting layer (HTL) materials for organic solar cells (OSCs).Thus,solution-processed HTL materials with excellent hole collection ability and good compatibility with large-area processing technique are strongly desired for OSCs.Herein,we developed a cost-effective and solution-processed MoO_(3)HTL for efficient OSCs.By adding a small amount of glucose as reducing reagent into the ammonium molybdate precursor solution,a deeply n-doped MoO_(3),namely G:Mo,was prepared through the sol–gel method.Compared to pristine MoO_(3),the conductivity of G:Mo was enhanced by two orders of magnitude,which greatly improved the hole collection ability of the HTL.OSCs with G:Mo can exhibit comparable PCE to the PEDOT:PSS device.Using PBDB-TF:BTP-eC9 as the active layer,a PCE of 17.1%is obtained for the device,which is the highest PCE value for OSC using a solution-processed MoO_(3)HTL.More importantly,G:Mo is well compatible with the blade-coating processing.The OSC using a blade-coated G:Mo showed almost no PCE loss as compared to the device with spin-coated G:Mo HTL.The results from this work indicate that G:Mo is a promising HTL material for the practical production of OSCs.
基金support by the Basic Energy Sciences,Department of Energy (DEFG0286ER45237).
文摘Polymeric systems have played an important role as structure-directing agents and in the control of nucleation and growth of crystals.This article reviews the work of our research group in the field of the polymer-assisted crystallization of inorganic materials,mainly focused on the formation of highly ordered,porous molybdenum oxide nanostructures.Different experimental parameters including the influence of poly(ethylene oxide)-containing polymers on the morphology and structure of the products obtained fr...
基金supported by the National Natural Science Foundation of China(Nos.51575528,51875577)Beijing NovaProgram Interdisciplinary Studies Cooperative Project(No.2181100006218138)+1 种基金Science Foundation of China University of Petroleum-Beijing(Nos.2462019QNXZ02,2462018BJC004)the Research Program of Yongchuan Science and Technology Commission(Ycstc,No.2018nb1402)。
文摘The synthesized near infrared molybdenum oxide quantum dots perform excellent red fluorescence imaging performance and photothermal performance,which have 600,650 and 700 nm three unique peaks excited at 540 nm,with a high quantum yield around 20%.Meanwhile,with 808 nm NIR laser excitation,10 mg/mL modified Molybdenum oxide quantum dots can increase temperature up to 72.2℃within 150 s and 77.7℃within 270 s,respectively.
基金This work has been financially supported by Foundation of National Fundamental Research and Development.
文摘The performance of supported and unsupported molybdenum carbide for thepartial oxidation of methane (POM) to syngas was investigated. An evaluation of the catalystsindicates that bulk molybdenum carbide has a higher methane conversion during the initial stage buta lower selectivity to CO and H_2/CO ratio in the products. The rapid deactivation of the catalystis also a significant problem. However, the supported molybdenum carbide catalyst shows a muchhigher methane conversion, increased selectivity and significantly improved catalytic stability. Thecharacterization by XRD and BET specific area measurements depict an improved dispersion ofmolybdenum carbide when using alumina as a carrier. The bulk or the supported molybdenum carbideexists in the β-MO_2C phase, while it is transformed into molybdenum dioxide postcatalysis which isan important cause of molybdenum carbide deactivation.
基金Project supported by the Science Foundation of the Education Commission of Shandong Province,China (Grant No. J10LA04)
文摘Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency(RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis.The resistivity first decreases and then increases with the increase in MoO3 content.The lowest resistivity achieved is 9.2 × 10-4.cm,with a high Hall mobility of 30 cm2.V-1.s-1 and a carrier concentration of 2.3×1020 cm-3 at an MoO3 content of 2 wt%.The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO3 content in the target.
文摘A new method of preparing electrical conductive molybdenum oxide by thermal decomposition from hydrazine-containing molybdenum salt was described.The process of the thermal decomposition of hydrazine- containing molybdemum salt was investigated by thermal analysis(TG and DTA) and the thermally decomposed product was studied by S.E.M.and chemical analysis.The result indicated that the molybdenum oxide obtained in this way was electrical conductive.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of Chinathe Chinese Academy of Sciences
文摘Recent years has seen increasing interest in building artificial synaptic devices to emulate the computation performed by biological synapses.Biological synapses are functional links between neurons,through which information is transmitted in the neuron network.The information can be stored and processed simultaneously in the same synapse through tuning synaptic weight,which is defined as the strength of the correlation between
基金supported by National Natural Science Foundation of China(22209064,52071171,and 52202248)the Fundamental Research Funds for Public Universities in Liaoning(LJKLJ202434)+6 种基金the Australian Research Council(ARC)through Future Fellowship(FT210100298)Discovery Project(DP220100603)Linkage Project(LP210200504,LP220100088,LP230200897)Industrial Transformation Research Hub(IH240100009)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021)European Commission’s Australia-Spain Network for Innovation and Research Excellence(AuSpire)。
文摘Rechargeable aqueous Zn-MoO_(x)batteries are promising energy storage devices with high theoretical specific capacity and low cost.However,MoO_(3)cathodes suffer drastic capacity decay during the initial discharging/charging process in conventional electrolytes,resulting in a short cycle life and challenging the development of Zn-MoO_(x)batteries.Here we comprehensively investigate the dissolution mechanism of MoO_(3)cathodes and innovatively introduce a polymer to inhibit the irreversible processes.Our findings reveal that this capacity decay originates from the irreversible Zn^(2+)/H^(+)co-intercalation/extraction process in aqueous electrolytes.Even worse,during Zn^(2+)intercalation,the formed Zn_(x)MoO_(3-x)intermediate phase with lower valence states(Mo^(5+)/Mo^(4+))experiences severe dissolution in aqueous environments.To address these challenges,we developed a first instance of coating a polyaniline(PANI)shell around the MoO_(3)nanorod effectively inhibiting these irreversible processes and protecting structural integrity during long-term cycling.Detailed structural analysis and theoretical calculations indicate that=N-groups in PANI@MoO_(3-x)simultaneously weaken H+adsorption and enhance Zn^(2+)adsorption,which endowed the PANI@MoO_(3-x)cathode with reversible Zn^(2+)/H^(+)intercalation/extraction.Consequently,the obtained PANI@MoO_(3-x)cathode delivers an excellent discharge capacity of 316.86 mA h g^(-1)at 0.1 A g^(-1)and prolonged cycling stability of 75.49%capacity retention after 1000 cycles at 5 A g^(-1).This work addresses the critical issues associated with MoO_(3)cathodes and significantly advances the understanding of competitive multi-ion energy storage mechanisms in aqueous Zn-MoO_(3)batteries.
文摘The MoOx/AuNPs composite film modified glassy carbon electrode was fabricated by electro-depositing simultaneously gold nanoparticles and molybdenum oxides using cyclic voltammetry. The morphology and topography of the MoOx/AuNPs composite were char-acterized by scan electron microscopy and X-ray photoelectron spectroscopy respectively, and the electrocatalytic oxidation of glucose at the MoOx/AuNPs composite film was inves-tigated and analyzed in detail. It was shown that the MoOx/AuNPs composite was of strong electrocatalytic activity towards oxidation of glucose as well as other saccharides, so that an attempt was made for direct voltammetric determination of glucose. Then the positive scan polarization reverse catalytic voltammetry was proposed for the first time. Based on this method, the pure oxidation current was extracted by subtraction of the blank current in the reverse scan. The current sensitivity was enhanced tremendously and the signal to noise ra-tio was improved adequately. The electrocatalytic oxidation of glucose at the MoOx/AuNPs modified electrode was performed in alkaline medium, a wide linear range from 0.01 mmol/L to 4.0 mmol/L of glucose, a higher current sensitivity of 2.35 mA/(mmol/L·cm2), and a lower limit of detection of 9.01 μmol/L (at signal/noise=3) were achieved. In addition, the electrocatalytic oxidation of other saccharides such as lactose, fructose and sucrose was also evaluated.