期刊文献+
共找到11,183篇文章
< 1 2 250 >
每页显示 20 50 100
Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids 被引量:1
1
作者 Wen-Jing Li Jun-Bo Wang +2 位作者 Yu-Heng Liu Mo Zhang Zhan-Hui Zhang 《Chinese Chemical Letters》 2025年第3期282-289,共8页
Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporti... Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity. 展开更多
关键词 Heterogeneous catalysis Carbon nitride molybdenum NITROARENES Boronic acids AMINATION
原文传递
Advancement in Tungsten/Molybdenum Alloy Welding Technology
2
作者 Wang Xingxing Chu Haoqiang +4 位作者 Xie Xu Pan Kunming Du Quanbin Li Ang Zhang Liyan 《稀有金属材料与工程》 北大核心 2025年第1期94-108,共15页
Tungsten/molybdenum alloys are widely utilized in the nuclear industry,aerospace and various other fields due to their high melting points and strength characteristics.However,poor sinterability and processability mak... Tungsten/molybdenum alloys are widely utilized in the nuclear industry,aerospace and various other fields due to their high melting points and strength characteristics.However,poor sinterability and processability make it difficult to manufacture largesize or complex-shaped parts.Hence,an in-depth study on the welding technology of tungsten/molybdenum alloys is urgent.An introduction of tungsten/molybdenum alloy welding defects and joining process was provided,along with recent advancements in brazing,spark plasma sintering diffusion bonding,electron beam welding and laser beam welding.The latest progress in alloy doping treatment applied to tungsten/molybdenum alloy dissimilar welding was also discussed,and existing welding problems were pointed out.The development prospects of weldability of tungsten/molybdenum alloy by various joining technologies were forecasted,thereby furnishing a theoretical and practical found. 展开更多
关键词 tungsten alloy molybdenum alloy welding technology MICROSTRUCTURE mechanical properties
原文传递
Laser welding of molybdenum socket joint for ultra-high-temperature heat pipes based on niobium alloying
3
作者 Jia-xuan ZHAO Hong-da ZHANG +3 位作者 Lin-jie ZHANG Xiang-dong DING Yuan-jun SUN Guang SUN 《Transactions of Nonferrous Metals Society of China》 2025年第2期511-524,共14页
The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased f... The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased from HV 194.7 to HV 283.3.Additionally,Nb can react with O to form dispersed Nb_(2)O_(5) along grain boundaries,impeding grain boundary migration and dislocation movement while reducing the content of volatile Mo oxide along these boundaries.The incorporation of Nb in FZ partially inhibits pore defects and enhances joint load-bearing capacity.In comparison to the laser-welded joints without adding Nb(LW),the tensile strength of the laser-welded joints with Nb alloying(LW-Nb)was significantly improved by approximately 69%from 327.5 to 551.7 MPa.Furthermore,the fracture mechanism of the joints transitioned from intergranular fracture to transgranular fracture. 展开更多
关键词 laser welding molybdenum heat pipe niobium alloying MICROSTRUCTURE performance
在线阅读 下载PDF
Designing mesh-like defective molybdenum carbides for ethanol synthesis via syngas-derived DMO hydrogenation
4
作者 Yannan Sun Jiafeng Yu +3 位作者 Xingtao Sun Yu Han Qingjie Ge Jian Sun 《Chinese Journal of Catalysis》 2025年第6期234-241,共8页
Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in th... Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in the efficient utilization of coal resources.In this study,a molybdenum carbide catalyst with a three-dimensional mesh-like hollow structure and lattice defects was carefully designed.The MoO_(3)precursor with abundant oxygen vacancies and defects was prepared by flame spray pyrolysis,and a structural modifier,Cu,was introduced by sputtering.The Cu deposited by sputtering affected the carburization and phase evolution processes.A three-dimensional mesh-like hollow structure composed of defective molybdenum carbide is formed,with theβ-Mo_(2)C exhibiting lattice distortions and defects.This defectiveβ-Mo_(2)C exhibits high reactivity,and facilitates the C=O hydrogenation process,showing a high reactivity of 83.1%yield in the hydrogenation of dimethyl oxalate.This work provides a new approach to the design and application of molybdenum carbide catalysts. 展开更多
关键词 SYNGAS Dimethyl oxalate HYDROGENATION ETHANOL molybdenum carbides
在线阅读 下载PDF
Molybdenum carbide activated calcium sulfite for antibiotic decontamination at near-neutral pH:Dissolved oxygen promoted bisulfite adsorption for singlet oxygen generation
5
作者 Mimi Wu Shoufeng Tang +2 位作者 Zhibin Wang Qingrui Zhang Deling Yuan 《Chinese Chemical Letters》 2025年第8期624-631,共8页
Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility... Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility to secondary pollution in application.Calcium sulfite(CaSO_(3)),one of the byproducts of flue gas desulfurization,is of interest in AOPs because of its ability to slowly release S(Ⅳ),low toxicity,and costeffectiveness.Therefore,a heterogenous activator,molybdenum carbide(Mo_(2)C)was selected to stimulate Ca SO3for typical antibiotic elimination.Benefiting from the dissociation form of HSO_(3^(-))from CaSO_(3)and improved electron transfer of Mo_(2)C at pH 6,the simulated target metronidazole(MTZ)can be removed by 85.65%with rate constant of 0.02424 min^(-1)under near-neutral circumstance.The combining determinations of quenching test,electron spin resonance spectrum,and reactive species probe demonstrated singlet oxygen(^(1)O_(2))and sulfate radicals played leading role for MTZ decontamination.Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ),and revealed that dissolved oxygen promoted the adsorption of HSO_(3^(-))on the surface of Mo_(2)C,then facilitating production of^(1)O_(2).The favorable stability and applicability for Mo_(2)C/CaSO_(3)process indicated an applied prospect in actual pharmaceutical wastewater. 展开更多
关键词 SULFITE ACTIVATION molybdenum carbide Singlet oxygen Near-neutral pH
原文传递
Metallic cobalt mediated molybdenum nitride for efficient glycerol upgrading with water electrolysis
6
作者 Yiming Guo Zhouhong Yu +1 位作者 Bin He Pengzuo Chen 《Chinese Chemical Letters》 2025年第9期589-594,共6页
Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocataly... Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis. 展开更多
关键词 Metallic Co molybdenum nitride HETEROSTRUCTURE Glycerol upgrading Water electrolysis
原文传递
Hydrogen production via ammonia decomposition on molybdenum carbide catalysts: Exploring the Mo/C ratio and phase transition dynamics
7
作者 Bowen Sun Siyun Mu +3 位作者 Bingbing Chen Guojun Hu Rui Gao Chuan Shi 《Chinese Journal of Catalysis》 2025年第7期365-376,共12页
The deployment of non-precious metal catalysts for the production of COx-free hydrogen via the ammonia decomposition reaction(ADR)presents a promising yet great challenge.In the present study,two crystal structures of... The deployment of non-precious metal catalysts for the production of COx-free hydrogen via the ammonia decomposition reaction(ADR)presents a promising yet great challenge.In the present study,two crystal structures of α-MoC and β-Mo_(2)C catalysts with different Mo/C ratios were synthesized,and their ammonia decomposition performance as well as structural evolution in ADR was investigated.The β-Mo_(2)C catalyst,characterized by a higher Mo/C ratio,demonstrated a remarkable turnover frequency of 1.3 s^(-1),which is over tenfold higher than that ofα-MoC(0.1 s^(-1)).An increase in the Mo/C ratio of molybdenum carbide revealed a direct correlation between the surface Mo/C ratio and the hydrogen yield.The transient response surface reaction indicated that the combination of N*and N*derived from NH_(3) dissociation represents the rate-determining step in the ADR,andβ-Mo2C exhibited exceptional proficiency in facilitating this pivotal step.Concurrently,the accumulation of N*species on the carbide surface could induce the phase transition of molybdenum carbide to nitride,which follows a topological transformation.It is discovered that such phase evolution was affected by the Mo-C surface and reaction temperature simultaneously.When the kinetics of combination of N*was accelerated by rising temperatures and its accumulation on the carbide surface was mitigated,β-Mo_(2)C maintained its carbide phase,preventing nitridation during the ADR at 810℃.Our results contribute to an in-depth understanding of the molybdenum carbides’catalytic properties in ADR and highlight the nature of the carbide-nitride phase transition in the reaction. 展开更多
关键词 molybdenum carbides Phase transition NITRIDATION Recombination Ammonia decomposition reaction
在线阅读 下载PDF
First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
8
作者 Tao Wang Ming-Hong Wen +4 位作者 Xin-Xin Zhang Wei-Hua Wang Jia-Mei Liu Xu-Ying Wang Pei-Fang Li 《Chinese Physics B》 2025年第3期142-150,共9页
Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure... Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure prediction method to conduct a comprehensive analysis of the crystal structures and electronic properties of molybdenum nitride(Mo_(x)N_(1-x))under high pressure.We discovered two novel high-pressure phases:Imm2-MoN_(3) and Cmmm-MoN_(4),and confirmed their stability through the analysis of elastic constants and phonon dispersion curves.Notably,the MoN_(4) phase,with its high Vickers hardness of 36.9 GPa,demonstrates potential as a hard material.The results of this study have broadened the range of known high-pressure phases of molybdenum nitride,providing the groundwork for future theoretical and experimental researches. 展开更多
关键词 molybdenum nitride CALYPSO crystal structure high pressure
原文传递
Molybdenum cofactor biosynthesis gene ZmCNX6 regulates vivipary and drought tolerance in maize
9
作者 Yuxin Chen Yiru Wang +4 位作者 Minghao Sun Jian Li Yang Qin Quansheng Huang Jun Zheng 《The Crop Journal》 2025年第5期1479-1489,共11页
Pre-harvest sprouting(PHS)or vivipary is a major problem affecting cereal quality and grain quantity and is primarily linked to the dysregulation of abscisic acid(ABA)biosynthesis in plants.Therefore,elucidating the m... Pre-harvest sprouting(PHS)or vivipary is a major problem affecting cereal quality and grain quantity and is primarily linked to the dysregulation of abscisic acid(ABA)biosynthesis in plants.Therefore,elucidating the molecular mechanisms governing seed dormancy is crucial for developing strategies to improve crop productivity.In this study,we identified a novel viviparous maize mutant,viviparous-like 5(vp-like5),which exhibits precocious germination in developing seeds.Through map-based cloning,we discovered that ZmCNX6,which encodes a small subunit of molybdopterin synthase essential for molybdenum cofactor(MoCo)biosynthesis,is the causal gene responsible for the vp-like5 phenotype.Biochemical assays have demonstrated significantly reduced activities of MoCo-dependent enzymes,including aldehyde oxidase(AO),xanthine dehydrogenase(XDH),and nitrate reductase(NR),in vplike5.AO is essential for the ABA biosynthesis,and the observed ABA deficiency in vp-like5 likely drives the viviparous phenotype.Expression analysis showed that ZmCNX6 was stably expressed during seed development,indicating its significant role in seed development.Furthermore,overexpression of ZmCNX6 not only enhanced the activities of MoCo-dependent enzymes but also improved drought tolerance in maize.Collectively,our study revealed ZmCNX6 as a multifunctional hub coordinating MoCo metabolism,ABA-dependent dormancy regulation,and abiotic stress responses,offering a potential target for simultaneously mitigating vivipary and improving drought resistance in maize. 展开更多
关键词 MAIZE VIVIPARY molybdenum cofactor(MoCo) Abscisic acid(ABA) DROUGHT
在线阅读 下载PDF
Lithium Storage Mechanisms and Electrochemical Behavior of a Molybdenum Disulfide Nanoparticle Anode
10
作者 Xintong Li Wei Hao +15 位作者 Hua Wang Tianyi Li Dimitrios Trikkaliotis Xinwei Zhou Dewen Hou Kai Chang Ahmed M.Hashem Yuzi Liu Zhenzhen Yang Saichao Cao Gyeong Hwang George Z.Kyzas Shengfeng Yang C.Buddie Mullins Christian M.Julien Likun Zhu 《Energy & Environmental Materials》 2025年第3期28-37,共10页
This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in sit... This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in situ and ex situ X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,and transmission electron microscopy,the research unravels the complex structural and chemical evolution of MoS_(2) throughout its cycling.A key discovery is the identification of a unique Li intercalation mechanism in MoS_(2),leading to the formation of reversible Li_(2)MoS_(2) phases that contribute to the extra capacity of the MoS_(2) electrode.Density function theory calculations suggest the potential for overlithiation in MoS_(2),predicting Li5MoS_(2) as the most energetically favorable phase within the lithiation–delithiation process.Additionally,the formation of a Li-rich phase on the surface of Li_(4)MoS_(2) is considered energetically advantageous.After the first discharge,the battery system engages in two main reactions.One involves operation as a Li-sulfur battery within the carbonate electrolyte,and the other is the reversible intercalation and deintercalation of Li in Li_(2)MoS_(2).The latter reaction contributes to the extra capacity of the battery.The incorporation of reduced graphene oxide as a conductive additive in MoS_(2) electrodes notably improves their rate capability and cycling stability. 展开更多
关键词 extra capacity lithium-ion battery lithium-rich phase molybdenum disulfide reduced graphene oxide
在线阅读 下载PDF
Modification strategies of molybdenum sulfide towards practical high-performance lithium-sulfur batteries:a review
11
作者 Xin Xu Yan Guo +3 位作者 Hua-Jun Zhao Yi-Ke Huang Jun-Po Guo Huai-Yu Shao 《Rare Metals》 2025年第3期1556-1576,共21页
Lithium-sulfur batteries(LSBs)have undoubtedly become one of the most promising battery systems due to their high energy density and the cost-effectiveness of sulfur cathodes.However,challenges,such as the shuttle eff... Lithium-sulfur batteries(LSBs)have undoubtedly become one of the most promising battery systems due to their high energy density and the cost-effectiveness of sulfur cathodes.However,challenges,such as the shuttle effect from soluble long-chain lithium polysulfides(LiPSs)and the low conductivity of active materials,hinder their commercialization.Under this circumstance,molybdenum sulfide(MoS_(2))has attracted widespread attention due to its unique physicochemical properties,particularly its capability to mitigate the shuttle effect in LSBs through electrostatic or chemical bonds.Nonetheless,the industrial application of MoS_(2)in LSBs is limited by the inertness of its basal surface and inadequate electron transfer properties.This review mainly introduces various modification strategies of MoS_(2)materials in LSBs and their effects on electrochemical and catalytic performance.Unlike previous reviews and related papers,detailed discussions were conducted on the specific mechanisms of each modification strategy,including(1)shape manipulation,(2)support engineering,(3)heterostructure engineering,(4)defect engineering,(5)interlayer engineering,(6)phase engineering,(7)strain engineering,(8)hybridization.Comprehensive conclusions and outlook on the development of MoS_(2)as an abundant electrocatalyst for LSBs are also discussed in the end. 展开更多
关键词 Lithium-sulfur batteries molybdenum sulfide Modification strategies
原文传递
Electron structure customization of molybdenum phosphide via lanthanum doping toward highly efficient overall water splitting
12
作者 Xin Ye He Ma +5 位作者 Shaoyang Wu Fan Wu Xiangqun Zhuge Jiangchuan Liu Yurong Ren Peng Wei 《Journal of Materials Science & Technology》 2025年第15期227-235,共9页
Due to its high electrical conductivity and platinum-like electronic structure,molybdenum phosphide(MoP)has attracted extensive attention as a potential catalyst for the hydrogen evolution reaction(HER)by water splitt... Due to its high electrical conductivity and platinum-like electronic structure,molybdenum phosphide(MoP)has attracted extensive attention as a potential catalyst for the hydrogen evolution reaction(HER)by water splitting.Nevertheless,in the oxygen evolution reaction(OER),the electrocatalytic performance of MoP did not achieve satisfactory results.Therefore,novel nitrogen-doped carbon-encapsulated Ladoped MoP nanoparticles(La-MoP@N/C)are synthesized,which show outstanding durability and electrocatalytic activity in both HER and OER.Detailed structural characterization and calculations confirm that La doping not only effectively adjusts the electron density around Mo and P atoms,accelerates the adsorption and desorption processes,but also increases the number of active sites.Low overpotentials of 113 and 388 mV for HER and OER at 10 mA cm−2 are achieved with the optimized La0.025-Mo0.975P@N/C.Furthermore,the two-electrode electrolyzer assembled with La0.025-Mo0.975P@N/C also presents impressive water splitting performance.This study indicates that rare earth doping can be used as an efficient strategy to control the local electronic structure of phosphides precisely,which can also be extended to other electrocatalysts. 展开更多
关键词 Water splitting Rare earth metal doping molybdenum phosphide Oxygen evolution reaction Hydrogen evolution reaction
原文传递
Creep condition-oriented design of molybdenum alloys with La_(2)O_(3)addition assisted by microstructure-based crystal plasticity modeling
13
作者 Jie Kuang Wei Wen +3 位作者 Pengming Cheng Gang Liu Jinyu Zhang Jun Sun 《Journal of Materials Science & Technology》 2025年第14期138-152,共15页
Molybdenum(Mo)alloys are essential for applications requiring outstanding mechanical properties at high temperatures across various industrial sectors.Understanding and predicting the creep properties of Mo alloys is ... Molybdenum(Mo)alloys are essential for applications requiring outstanding mechanical properties at high temperatures across various industrial sectors.Understanding and predicting the creep properties of Mo alloys is crucial for service safety and the design of new materials.This study introduces a physicsbased crystallographic creep model dedicated to the characteristic hierarchical microstructure of Mo–La_(2)O_(3)alloys.By sourcing most parameters from existing literature and calibrating others within recommended ranges,the model efficiently predicts creep behavior beyond its initial calibration scope.Through the integration of microstructure descriptors,we systematically explored the impact of different microstructural features on the creep behavior and identified the underlying mechanisms.This analysis yielded two pivotal concepts:the minimum acceptable grain size and the necessary nanoparticle number density.These metrics,readily obtainable from the model,quantify the requisite grain size and nanoparticle content to achieve the target steady-state creep rates for operational demands,thus providing essential insights for the creep condition-oriented design of Mo–La_(2)O_(3)alloys.The model is also expected to be adaptable for developing other Mo alloys reinforced by second phase particles,aimed at achieving desired creep properties under specified conditions,assuming that relevant parameters are accessible through literature or lower-scale simulations. 展开更多
关键词 molybdenum(Mo)alloys La_(2)O_(3)particle Creep property Crystal plasticity
原文传递
Effect of post weld heat treatment on grain boundary character distribution and corrosion resistance of friction stir welded armourgrade nickel and molybdenum-free high-nitrogen austenitic stainless steel
14
作者 Arun Kumar Gurrala Raffi Mohammed G Madhusudhan Reddy 《Defence Technology(防务技术)》 2025年第9期246-261,共16页
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-... This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications. 展开更多
关键词 Nickel and molybdenum free high-nitrogen austenitic stainless steel Friction stir welding Post-weld heat treatment Electron backscattered diffraction Microstructural gradients Pitting corrosion resistance Coincident site lattice Grain boundary characteristic distribution
在线阅读 下载PDF
Disassembling one-dimensional chains in molybdenum oxides 被引量:1
15
作者 Xian Du Yidian Li +4 位作者 Wenxuan Zhao Runzhe Xu Kaiyi Zhai Yulin Chen Lexian Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期130-138,共9页
The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)s... The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems. 展开更多
关键词 electronic structure molybdenum oxide ONE-DIMENSION density-functional theory
原文传递
Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching 被引量:1
16
作者 Fengjuan Zhang Chenhui Liu +2 位作者 Srinivasakannan Chandrasekar Yingwei Li Fuchang Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期91-105,共15页
The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient ... The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate. 展开更多
关键词 molybdenum metallurgy microwave oxidation roasting removing impurities sodium hydroxide leaching
在线阅读 下载PDF
Enhanced mechanical properties of molybdenum alloy originating from composite strengthening of Re and CeO_(2) 被引量:1
17
作者 Meng-yao ZHANG Shuai MA +3 位作者 Xin LI Ye GAO Zhuang-zhi WU De-zhi WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3295-3308,共14页
To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical... To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2). 展开更多
关键词 molybdenum−rhenium alloy cerium oxide composite strengthening mechanical properties
在线阅读 下载PDF
N-Heterocyclic Carbene-Pyridine Molybdenum Complex Supported over SBA-15 for Converting of Carbon Dioxide into Cyclic Carbonates 被引量:1
18
作者 Li Jianwen Wang Tao +3 位作者 Tao Sheng Chen Fei Li Min Liu Ning 《有机化学》 SCIE CAS CSCD 北大核心 2024年第10期3213-3222,共10页
Synthesis of cyclic carbonates from carbon dioxide(CO_(2))and epoxides is an effective pathway for the CO_(2) utilization.Although various metal catalysts have been reported,it is highly desirable to develop a method ... Synthesis of cyclic carbonates from carbon dioxide(CO_(2))and epoxides is an effective pathway for the CO_(2) utilization.Although various metal catalysts have been reported,it is highly desirable to develop a method for the reuse or recycling of catalysts.Herein,an N-heterocyclic carbene-pyridine molybdenum complex supported over SBA-15(Mo@SBA-15)was used as an efficient and recyclable catalyst for converting CO_(2) and epoxides into cyclic carbonates.Mo@SBA-15 in combination with tetra-butylammonium bromide(TBAB)shows high catalytic activity in the synthesis of cyclic carbonates under 100℃and 1 MPa CO_(2) pressure.In addition,Mo@SBA-15 was reused seven times without any significant activity loss. 展开更多
关键词 carbon dioxide cyclic carbonate molybdenum catalyst CO_(2)utilization heterogeneous catalyst
原文传递
Robust T_c in element molybdenum up to 160 GPa
19
作者 吴新月 郭淑敏 +8 位作者 郭鉴宁 陈诉 王煜龙 张可欣 朱程程 刘晨晨 黄晓丽 段德芳 崔田 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期188-193,共6页
Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record supercondu... Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1). 展开更多
关键词 molybdenum element superconductor high pressure SUPERCONDUCTIVITY
原文传递
Enhanced activation of peroxymonosulfate on layered molybdenum disulfide loaded with Co-La bimetallic oxide for efficient degradation of chloramphenicol
20
作者 Yu-Ning Fan Yun-Qiu Zhang +6 位作者 San-Shuang Gao Zeng-Hui Bi Yin Wang Shu-Xing Zhou Qian Liu Tian-Ping Lv Guang-Zhi Hu 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4628-4635,共8页
The use of transition metal-activated peroxymonosulfate(PMS)as an advanced oxidation technology has gained recognition.This study developed a catalyst using cobaltDlanthanum bimetallic oxide supported on layered molyb... The use of transition metal-activated peroxymonosulfate(PMS)as an advanced oxidation technology has gained recognition.This study developed a catalyst using cobaltDlanthanum bimetallic oxide supported on layered molybdenum disulfide(Mo S_(2))as a carrier.The CoDLa/Mo S_(2)catalyst was synthesised through coprecipitation,followed by calcination with an optimised metal ratio of Co:La=2:1 to activate PMS and degrade trace chloramphenicol(CAP)in water.The chemical composition of the catalyst was confirmed using X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).At catalyst and PMS dosages of 0.1 and 0.5 g·L^(-1),respectively,the degradation rate of CAP was 95%with in 30 min.The catalyst exhibitedstrong resistance to most interfering anions and maintained a high degradation rate at p H 3D11.Liquid chromatographyDmass spectrometry analysis revealed the potential degradation pathways of CAP in the CoDLa/Mo S_(2)(2:1)/PMS system.For other pollutants,such as oxytetracycline,complete degradation was achieved within 20 min,demonstrating the broad applicability of the CoDLa/Mo S_(2)(2:1)/PMS system for the degradation and removal of antibiotic organic contaminants. 展开更多
关键词 catalyst molybdenum DISULFIDE
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部