CRISPR-based tran-scription regulators(CRISPR-TRs)have revolutionized the field of synthetic biol-ogy by enabling tar-geted activation or repression of any de-sired gene.However,the majority of exist-ing inducible CRI...CRISPR-based tran-scription regulators(CRISPR-TRs)have revolutionized the field of synthetic biol-ogy by enabling tar-geted activation or repression of any de-sired gene.However,the majority of exist-ing inducible CRISPR-TRs are limited by their dependence on specific sequences,which restricts their flex-ibility and controllability in genetic engineering applications.In this study,we proposed a novel strategy to construct sequence-independent inducible CRISPR-TRs,which is achieved by the design of stem loop 2 in the single guide RNA(sgRNA).Under this strategy,by utiliz-ing toehold-mediated strand displacement(TMSD)reactions between small endogenous molecules(miR-20a and TK1 mRNA)and bridge RNA(bRNA)to link bRNA with sgRNA,we achieved synergistic transcriptional activation of VP64 and p65-HSF1 in response to en-dogenous molecules.To enable response to exogenous molecules,we added response se-quences and bRNA sequences to the 5'end of sgRNA to block sgRNA activity,and achieved activation of sgRNA by shearing the response sequence,called sequential unlimited interlock-ing(SUI).Compared with conventional sequence-restricted interlocking(spacer-blocking hairpin(SBH)),the transcriptional activation ratio between response and non-response to the Cas6A protein using our approach was increased by 2.28-fold.Our work presents a modular and versatile framework for endogenous and exogenous molecule-responsive CRISPR-TRs in mammalian cells,without limitations imposed by sequence dependence.展开更多
All-small-molecule organic solar cells(ASM-OSCs)have garnered widespread attention in recent years.However,their power conversion efficiencies(PCEs)still fall behind those of polymer donor-based devices,primarily due ...All-small-molecule organic solar cells(ASM-OSCs)have garnered widespread attention in recent years.However,their power conversion efficiencies(PCEs)still fall behind those of polymer donor-based devices,primarily due to the challenge of realizing optimized morphology in ASM-OSCs.Here,a highly crystalline small molecule donor(SMD)named ZW2 is synthesized and incorporated into the Zn PTSEH:6TIC system.The addition of ZW2 synergistically regulates the morphology,molecular crystallinity,and molecular packing of blends,facilitating efficient charge transport and suppressing charge recombination.Consequently,an impressive PCE of 16.30%was delivered in the ternary device.This work highlights the significance of employing a highly crystalline SMD as the third component in tuning the crystallinity and morphology of blends,providing feasibility for achieving high-efficiency ASM-OSCs.展开更多
Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and e...Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets.展开更多
Stroke is the second leading cause of disability and mortality worldwide,imposing a substantial socioeconomic burden on individuals and healthcare systems.Annually,approximately 14 million people experience stroke,wit...Stroke is the second leading cause of disability and mortality worldwide,imposing a substantial socioeconomic burden on individuals and healthcare systems.Annually,approximately 14 million people experience stroke,with ischemic stroke comprising nearly 85%of cases,of which 10%to 20%involve large vessel occlusions.Currently,recombinant tissue plasminogen activator(tPA)remains the only approved pharmacological intervention.However,its utility is limited due to a narrow therapeutic window and low recanalization rates,making it applicable to only a minority of patients.Therefore,there is an urgent need for novel therapeutic strategies,including pharmacological advancements and combinatory treatments.Small-molecule natural medicines,particularly those derived from traditional Chinese herbs,have demonstrated significant therapeutic potential in ischemic stroke management.These compounds exert multiple neuroprotective effects,such as antioxidation,anti-inflammatory action,and inhibition of apoptosis,all of which are critical in mitigating stroke-induced cerebral damage.This review comprehensively examines the pathophysiology of acute ischemic stroke(AIS)and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.展开更多
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
Acceptor-donor-acceptor(A-D-A)type molecules,of which the novel non-fused azacyclic end-group pyrazoli-nones were modified with chlorine substitution on the phenyl ring,were synthesized.The non-fused azacyclic end-gro...Acceptor-donor-acceptor(A-D-A)type molecules,of which the novel non-fused azacyclic end-group pyrazoli-nones were modified with chlorine substitution on the phenyl ring,were synthesized.The non-fused azacyclic end-group py-razolinones have the advantages of simple synthesis steps,low cost and environmental friendliness,compared to the classical end-group dicyanomethyleneindianone.The properties of the synthesized A-D-A type molecules with non-fused azacyclic end groups were characterized by theoretical calculation,UV-vis absorption,cyclic voltammetry,X-ray diffraction and space charge limited current.It is shown that the strong UV-vis absorptions of the synthesized A-D-A type molecules are located in the wavelength range of 500~700 nm,with a moderate band gap of nearly 1.7 eV.At the same time,the influence of end-group chlorination on the properties of A-D-A type molecules was compared and explored.It is proven that this kind of A-D-A type molecule with non-fused azacyclic end groups has the potential to be applied as interfacial modified layer of the active layer in perovskite solar cell devices.展开更多
A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in...A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322.展开更多
Biomolecular condensates,also known as membraneless organelles,play a crucial role in cellular organization by concentrating or sequestering biomolecules.Despite their importance,synthetically mimicking these organell...Biomolecular condensates,also known as membraneless organelles,play a crucial role in cellular organization by concentrating or sequestering biomolecules.Despite their importance,synthetically mimicking these organelles using non-peptidic small organic molecules has posed a significant challenge.The present study reports the discovery of D008,a self-assembling small molecule that sequesters a unique subset of RNA-binding proteins.Analysis and screening of a comprehensive collection of approximately 1 million compounds in the Chinese National Compound Library(Shanghai)identified 44 self-assembling small molecules in aqueous solutions.Subsequent screening of the focused library,coupled with proteome analysis,led to the discovery of D008 as a small organic molecule with the ability to condensate a specific subset of RNA-binding proteins.In vitro experiments demonstrated that the D008-induced sequestration of RNA-binding proteins impeded mRNA translation.D008 may offer a unique opportunity for studying the condensations of RNA-binding proteins and for developing an unprecedented class of small molecules that control gene expression.展开更多
Cancer is a serious global health issue,and exploring effective treatment methods is of great significance for cancer prevention and control.Carbon monoxide(CO),as an important gas signaling molecule in the life syste...Cancer is a serious global health issue,and exploring effective treatment methods is of great significance for cancer prevention and control.Carbon monoxide(CO),as an important gas signaling molecule in the life system,has been proven to have good anti-cancer effects.However,how to controllably,safely,and effectively deliver CO to the tumor site for clinical treatment remains a challenge.Herein,a new metal-free CO-releasing molecule COR-XAC was developed for controlling CO release and cancer therapy.COR-XAC is based on the hybrid of 3-hydroxyl flavone and oxanthracene fluorophores,showing visible light-controlled CO-releasing properties and near-infrared(NIR)ratiometric fluorescence changes at 690 and 760 nm.COR-XAC shows low cytotoxicity and can be successfully applied to release CO in cells and tumors,and the CO-releasing and delivery process could be monitored by its own NIR ratiometric fluorescence changes.More importantly,the anti-cancer performance of COR-XAC was evaluated in 4T1 tumor mice,and it was found that COR-XAC plus light illumination showed excellent tumor inhibition effect,which provided a promising new effective method for cancer treatment.展开更多
Traditional electrospray ionization tandem mass spectrometry(ESI-MS^(n))has been a powerful tool in diverse research areas,however,it faces great limitations in the study of protein-small molecule interactions.In this...Traditional electrospray ionization tandem mass spectrometry(ESI-MS^(n))has been a powerful tool in diverse research areas,however,it faces great limitations in the study of protein-small molecule interactions.In this article,the state-of-the-art temperature-controlled electrospray ionization tandem mass spectrometry(TC-ESI-MS^(n))is applied to investigate interactions between ubiquitin and two flavonol molecules,respectively.The combination of collision-induced dissociation(CID)and MS solution-melting experiments facilitates the understanding of flavonol-protein interactions in a new dimension across varying temperature ranges.While structural changes of proteins disturbed by small molecules are unseen in ESI-MS^(n),TC-ESI-MS^(n)allows a simultaneous assessment of the stability of the complex in both gas and liquid phases under various temperature conditions,meanwhile investigating the impact on the protein’s structure and tracking changes in thermodynamic data,and the characteristics of structural intermediates.展开更多
In the last few years,research on advanced ultrafast photonic devices has attracted great interest from laser physicists.As a semiconductor material with excellent nonlinear saturation absorption characteristics,Ga As...In the last few years,research on advanced ultrafast photonic devices has attracted great interest from laser physicists.As a semiconductor material with excellent nonlinear saturation absorption characteristics,Ga As has been used in solidstate and fiber lasers as a mode-locker.However,the pulse widths that have been reported in the searchable published literature are all long and the shortest is tens of picoseconds.Femtosecond pulse widths,desired for a variety of applications,have not yet been reported in Ga As-based pulsed lasers.In this work,we further explore the nonlinear characteristics of Ga As that has been magnetron sputtered onto the surface of a tapered fiber and its application in the generation of femtosecond lasing via effective dispersion optimization and nonlinearity management.With the enhanced interaction between evanescent waves and Ga As nanosheets,mode-locked soliton pulses as short as 830 fs are generated at repetition rates of 4.64 MHz.As far as we know,this is the first time that femtosecond-level pulses have been generated with a Ga As-based saturable absorber.In addition,soliton molecules,including in the dual-pulse state,are also realized under stronger pumping.This work demonstrates that Ga As-based photonic devices have good application prospects in effective polymorphous ultrashort pulsed laser generation.展开更多
Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:...Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.展开更多
The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategi...The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategies have been proposed,balancing the suppression of side reactions with the maintenance of fast Zn plating/stripping kinetics remains a significant challenge.In this study,sucrose,a sterically-hindered organic molecule with abundant hydroxyl groups,is employed to suppress the side reactions and maintain the moderate kinetics of Zn plating/stripping by modulating the hydrogen bond network without altering the Zn^(2+)solvation structure.Its steric hindrance effect further impedes the lateral diffusion of Zn atoms on the electrode surface within the electric double layer,effectively mitigating dendrite growth and stabilizing the electrodeposition process.Consequently,the formulated Suc/ZnSO_(4)electrolyte achieves a remarkably Coulombic efficiency of 99.90% over 2600 cycles at 3 mA cm^(-2)for 1 mAh cm^(-2)in Zn‖Cu cells.The enhanced Zn anode reversibility leads to excellent cycling stability in Zn‖LiFePO_(4)cells and Zn‖β-MnO_(2)cells.This study underscores the potential of sterically-hindered organic molecule strategies to enhance Zn anode stability while maintaining favorable Zn deposition/stripping dynamics in aqueous Zn batteries.展开更多
Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from...Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.展开更多
Straw return is the main practice used to increase soil organic matter(SOM)in agricultural ecosystems.To increase the efficiency of straw conversion to SOM,a large number of microbial inoculants have been developed.Ho...Straw return is the main practice used to increase soil organic matter(SOM)in agricultural ecosystems.To increase the efficiency of straw conversion to SOM,a large number of microbial inoculants have been developed.However,their effects are poor because of the complex water and temperature conditions,especially under sodic conditions.Small molecules can rapidly shift soil microbial communities and improve their ability to transform exogenous organic matter into SOM,providing a new direction for promoting high-efficiency straw conversion into SOM.In this study,we conducted a^(13)C-labeled straw degradation experiment using small molecules derived from lignin(LSMs)and humus(HSMs)as activators,investigating their effects on the microbial communities and formation of newly formed mineral-associated(^(13)C-MAOM)and particulate(^(13)C-POM)organic matter from^(13)C-labeled straw in both sodic and non-sodic soils.The^(13)C-labeled straw was mainly converted into^(13)C-MAOM,accounting for 73.97%–92.67%of the newly formed SOM.Biopolymer-derived small molecules decreased the exchangeable sodium percentage(ESP),but increased contents of^(13)C-MAOM and^(13)C-POM by shifting microbial communities,strengthening microbial cross-trophic interactions,enhancing enzyme activities,and increasing microbial residues in both soils.Addition of HSMs had greater impacts on^(13)C-MAOM formation than LSM addition.The^(13)C-MAOM and^(13)C-POM formation negatively correlated with ESP,but positively correlated with microbial cross-trophic interactions and enzyme activities in both soils.Our results suggest that biopolymer-derived small molecules promote^(13)C-MAOM and^(13)C-POM formation associated with microbial cross-trophic interactions between protistan predators and primary decomposers.Our study provides scientific support for future attempts to stimulate microbial cross-trophic interactions for boosting SOM accumulation under stressed conditions.展开更多
The presence of residual alkaline compounds in the ultrahigh-nickel layered oxide cathodes(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x≥_(0.9))aggravates structural degradation,increases surface reactivity,and promotes slurry gel...The presence of residual alkaline compounds in the ultrahigh-nickel layered oxide cathodes(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x≥_(0.9))aggravates structural degradation,increases surface reactivity,and promotes slurry gelation,leading to the capacity decay of batteries with these cathodes and complicating their manufacturing.Traditional approaches for addressing this issue,including direct removal,coverage,and utilization,are complex and require surface regeneration.Herein,we propose neutralizing residual alkaline compounds with 3-thiopheneboronic acid(3-TBA)to improve the performance of LiNi_(0.9)5Co_(0.04)Mn_(0.01)O_(2)(NCM)cathode material,a facile strategy that does not require any post-treatment.The suggested reaction yields a uniform and thin organic-modified layer on the surface of the NCM cathode,improving its chemical stability toward the electrolyte,as demonstrated by multiple characterization methods.The modified NCM cathode exhibited impressive cyclic and rate performances,achieving a capacity retention of 83.34%after 200 cycles at 1.0 C and a specific capacity of 162.00 mAh·g^(−1) at 10.0 C.Most importantly,the proposed approach can efficiently suppress unfavorable phase transitions,severe electrolyte degradation,and CO_(2) gas evolution,improving the application potential of ultrahigh-nickel layered oxide cathode materials.展开更多
The architectural design of redox-active organic molecules and the modulation of their electronic properties significantly influence their application in energy storage systems within aqueous environments.However,thes...The architectural design of redox-active organic molecules and the modulation of their electronic properties significantly influence their application in energy storage systems within aqueous environments.However,these organic molecules often exhibit sluggish reaction kinetics and unsatisfactory utilization of active sites,presenting significant challenges for their practical deployment as electrode materials in aqueous batteries.In this study,we have synthesized a novel organic compound(PTPZ),comprised of a centrally symmetric and fully ladder-type structure,tailored for aqueous proton storage.This unique configuration imparts the PTPZ molecule with high electron delocalization and enhanced structural stability.As an electrode material,PTPZ demonstrates a substantial proton-storage capacity of 311.9mAh g^(-1),with an active group utilization efficiency of up to 89% facilitated by an 8-electron transfer process,while maintaining a capacity retention of 92.89% after 8000 chargingdischarging cycles.Furthermore,in-situ monitoring technologies and various theoretical analyses have pinpointed the associated electrochemical processes of the PTPZ electrode,revealing exceptional redox activity,rapid proton diffusion,and efficient charge transfer.These attributes confer a significant competitive advantage to PTPZ as an anode material for high-performance proton storage devices.Consequently,this work contributes to the rational design of organic electrode materials for the advancement of rechargeable aqueous batteries.展开更多
Quantum algorithms offer more enhanced computational efficiency in comparison to their classical counterparts when solving specific tasks.In this study,we implement the quantum permutation algorithm utilizing a polar ...Quantum algorithms offer more enhanced computational efficiency in comparison to their classical counterparts when solving specific tasks.In this study,we implement the quantum permutation algorithm utilizing a polar molecule within an external electric field.The selection of the molecular qutrit involves the utilization of field-dressed states generated through the pendular modes of SrO.Through the application of multi-target optimal control theory,we strategically design microwave pulses to execute logical operations,including Fourier transform,oracle U_(f)operation,and inverse Fourier transform within a three-level molecular qutrit structure.The observed high fidelity of our outcomes is intricately linked to the concept of the quantum speed limit,which quantifies the maximum speed of quantum state manipulation.Subsequently,we design the optimized pulse sequence to successfully simulate the quantum permutation algorithm on a single SrO molecule,achieving remarkable fidelity.Consequently,a quantum circuit comprising a single qutrit suffices to determine permutation parity with just a single function evaluation.Therefore,our results indicate that the optimal control theory can be well applied to the quantum computation of polar molecular systems.展开更多
As a recently emerging wastewater treatment technology,Algal-bacterial granular sludge(ABGS)process shows significant advantages.However,current research on the ABGS system is a lack of a clear and complete understand...As a recently emerging wastewater treatment technology,Algal-bacterial granular sludge(ABGS)process shows significant advantages.However,current research on the ABGS system is a lack of a clear and complete understanding of the potential mechanism of signal molecules on the growth of ABGS.This study comprehensively explores the variations in the ABGS under different N-acyl-homoserine lactone(AHL)conditions by constructing three sequencing batch reactor(SBR)systems.The results indicate that N-hexanoyl-l-homoserine lactone(C6-HSL)accelerates the granulation process in the early stages by promoting the loosely bound extracellular polymeric substances(LB-EPS)secretion and filamentous bacteria growth,thereby shortening required time for initial granule formation.On the other hand,N-(3-oxodecanoyl)-l-homoserine lactone(3-oxo-C12-HSL)expedites the granulation process by promoting the tightly bound extracellular polymeric substances(TB-EPS)and aromatic protein secretion,benefiting structural stability and nitrogen and phosphorus removal efficiency of mature ABGS.展开更多
Exploring multifunctional interfacial modifiers is an effective approach to addressing interface issues in perovskite solar cells(PSCs)and improving device performance and stability.While most interfacial modifiers fo...Exploring multifunctional interfacial modifiers is an effective approach to addressing interface issues in perovskite solar cells(PSCs)and improving device performance and stability.While most interfacial modifiers focus on passivating defects at the interfaces,there has been limited investigation into the relationship between molecular design and interfacial charge dynamics.This work introduces resonance molecules with a push-pull effect for interfacial modification,allowing for synergistic regulation of passivation effects and charge dynamics.Specifically,FCz-PO,which includes an electron-withdrawing fluorine atom,exhibits superior passivation but poor molecular stacking and charge extraction.In contrast,MCz-PO,featuring an electron-donating methoxy group,provides effective passivation,wellordered molecular packing,and efficient charge extraction and transport.Consequently,PSCs using MCz-PO achieve high power conversion efficiency(PCE)of 24.74%and excellent operational stability.This study suggests that resonance structures can be an effective molecular design strategy for developing interfacial modifiers with both strong passivation capabilities and well-regulated charge dynamics.展开更多
基金supported by the National Natural Science Foundation of China(No.22073090,No.21991132,No.52021002)the National Key R&D Program of China(No.2020YFA0710700)the Funds of Youth Innovation Promotion Association,and the Fundamental Research Funds for the Central Universities(WK3450000009).
文摘CRISPR-based tran-scription regulators(CRISPR-TRs)have revolutionized the field of synthetic biol-ogy by enabling tar-geted activation or repression of any de-sired gene.However,the majority of exist-ing inducible CRISPR-TRs are limited by their dependence on specific sequences,which restricts their flex-ibility and controllability in genetic engineering applications.In this study,we proposed a novel strategy to construct sequence-independent inducible CRISPR-TRs,which is achieved by the design of stem loop 2 in the single guide RNA(sgRNA).Under this strategy,by utiliz-ing toehold-mediated strand displacement(TMSD)reactions between small endogenous molecules(miR-20a and TK1 mRNA)and bridge RNA(bRNA)to link bRNA with sgRNA,we achieved synergistic transcriptional activation of VP64 and p65-HSF1 in response to en-dogenous molecules.To enable response to exogenous molecules,we added response se-quences and bRNA sequences to the 5'end of sgRNA to block sgRNA activity,and achieved activation of sgRNA by shearing the response sequence,called sequential unlimited interlock-ing(SUI).Compared with conventional sequence-restricted interlocking(spacer-blocking hairpin(SBH)),the transcriptional activation ratio between response and non-response to the Cas6A protein using our approach was increased by 2.28-fold.Our work presents a modular and versatile framework for endogenous and exogenous molecule-responsive CRISPR-TRs in mammalian cells,without limitations imposed by sequence dependence.
基金the National Key Research and Development Program of China(2022YFB4200400)funded by the Ministry of Science and Technology of China,the National Natural Science Foundation of China(52172048,52103221,22205130)+7 种基金the Shandong Provincial Natural Science Foundation(ZR2021ZD06,2023HWYQ026)the Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,2022A1515110643,2024A1515010023)the Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202309)the Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures(MMCS2023OF04)the Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry(20212BCD42018)the Fundamental Research Funds of Shandong University,the China Postdoctoral Science Foundation(2023M742063)the Shandong Postdoctoral Science Foundation(SDCX-ZG-202400256)the Guangxi Science and Technology Major Project(AA23073018)。
文摘All-small-molecule organic solar cells(ASM-OSCs)have garnered widespread attention in recent years.However,their power conversion efficiencies(PCEs)still fall behind those of polymer donor-based devices,primarily due to the challenge of realizing optimized morphology in ASM-OSCs.Here,a highly crystalline small molecule donor(SMD)named ZW2 is synthesized and incorporated into the Zn PTSEH:6TIC system.The addition of ZW2 synergistically regulates the morphology,molecular crystallinity,and molecular packing of blends,facilitating efficient charge transport and suppressing charge recombination.Consequently,an impressive PCE of 16.30%was delivered in the ternary device.This work highlights the significance of employing a highly crystalline SMD as the third component in tuning the crystallinity and morphology of blends,providing feasibility for achieving high-efficiency ASM-OSCs.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0134200)the National Natural Science Foundation of China(Grant No.12204214)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.GK202207012)QCYRCXM-2022-241。
文摘Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets.
基金supported by the National Natural Science Foundation of China(Nos.82174010 and 81973512)。
文摘Stroke is the second leading cause of disability and mortality worldwide,imposing a substantial socioeconomic burden on individuals and healthcare systems.Annually,approximately 14 million people experience stroke,with ischemic stroke comprising nearly 85%of cases,of which 10%to 20%involve large vessel occlusions.Currently,recombinant tissue plasminogen activator(tPA)remains the only approved pharmacological intervention.However,its utility is limited due to a narrow therapeutic window and low recanalization rates,making it applicable to only a minority of patients.Therefore,there is an urgent need for novel therapeutic strategies,including pharmacological advancements and combinatory treatments.Small-molecule natural medicines,particularly those derived from traditional Chinese herbs,have demonstrated significant therapeutic potential in ischemic stroke management.These compounds exert multiple neuroprotective effects,such as antioxidation,anti-inflammatory action,and inhibition of apoptosis,all of which are critical in mitigating stroke-induced cerebral damage.This review comprehensively examines the pathophysiology of acute ischemic stroke(AIS)and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
文摘Acceptor-donor-acceptor(A-D-A)type molecules,of which the novel non-fused azacyclic end-group pyrazoli-nones were modified with chlorine substitution on the phenyl ring,were synthesized.The non-fused azacyclic end-group py-razolinones have the advantages of simple synthesis steps,low cost and environmental friendliness,compared to the classical end-group dicyanomethyleneindianone.The properties of the synthesized A-D-A type molecules with non-fused azacyclic end groups were characterized by theoretical calculation,UV-vis absorption,cyclic voltammetry,X-ray diffraction and space charge limited current.It is shown that the strong UV-vis absorptions of the synthesized A-D-A type molecules are located in the wavelength range of 500~700 nm,with a moderate band gap of nearly 1.7 eV.At the same time,the influence of end-group chlorination on the properties of A-D-A type molecules was compared and explored.It is proven that this kind of A-D-A type molecule with non-fused azacyclic end groups has the potential to be applied as interfacial modified layer of the active layer in perovskite solar cell devices.
文摘A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322.
基金supported by JSPS(No.22H00350 to M.U.)Ministry of Health&Welfare,Republic of Korea(Korea Health Technology R&D Project through the Korea Health Industry Development Institute,No.HI19C1234 to H.K.)+3 种基金JST(the Establishment of University Fellowships towards the Creation of Science Technology Innovation,No.JPMJFS2123 to K.T.)supported and inspired by the International Collaborative Research Program of Institute for Chemical Research,Kyoto University(No.2024-84)Kyoto University On-Site Lab(Fudan-Kyoto Shanghai Lab)the international and interdisciplinary environments of JSPS CORE-to-CORE Program“Asian Chemical Biology Initiative”.
文摘Biomolecular condensates,also known as membraneless organelles,play a crucial role in cellular organization by concentrating or sequestering biomolecules.Despite their importance,synthetically mimicking these organelles using non-peptidic small organic molecules has posed a significant challenge.The present study reports the discovery of D008,a self-assembling small molecule that sequesters a unique subset of RNA-binding proteins.Analysis and screening of a comprehensive collection of approximately 1 million compounds in the Chinese National Compound Library(Shanghai)identified 44 self-assembling small molecules in aqueous solutions.Subsequent screening of the focused library,coupled with proteome analysis,led to the discovery of D008 as a small organic molecule with the ability to condensate a specific subset of RNA-binding proteins.In vitro experiments demonstrated that the D008-induced sequestration of RNA-binding proteins impeded mRNA translation.D008 may offer a unique opportunity for studying the condensations of RNA-binding proteins and for developing an unprecedented class of small molecules that control gene expression.
基金supported by the National Natural Science Foundation of China(Nos.22077044 and 21672080)the Natural Science Foundation of Hubei Province(No.2022CFA033)the funding from Wuhan Institute of Photochemistry and Technology(No.GHY2023KF008).
文摘Cancer is a serious global health issue,and exploring effective treatment methods is of great significance for cancer prevention and control.Carbon monoxide(CO),as an important gas signaling molecule in the life system,has been proven to have good anti-cancer effects.However,how to controllably,safely,and effectively deliver CO to the tumor site for clinical treatment remains a challenge.Herein,a new metal-free CO-releasing molecule COR-XAC was developed for controlling CO release and cancer therapy.COR-XAC is based on the hybrid of 3-hydroxyl flavone and oxanthracene fluorophores,showing visible light-controlled CO-releasing properties and near-infrared(NIR)ratiometric fluorescence changes at 690 and 760 nm.COR-XAC shows low cytotoxicity and can be successfully applied to release CO in cells and tumors,and the CO-releasing and delivery process could be monitored by its own NIR ratiometric fluorescence changes.More importantly,the anti-cancer performance of COR-XAC was evaluated in 4T1 tumor mice,and it was found that COR-XAC plus light illumination showed excellent tumor inhibition effect,which provided a promising new effective method for cancer treatment.
基金supports by the National Natural Science Foundation of China(No.22174037)the Joint Funds of the Hunan Provincial Natural Science Foundation of China(No.2023JJ50255)+1 种基金Changsha Science and Technology Project(No.Z202269490128)National Key Research and Development Program of China(No.2023YFF0613400)are appreciated.
文摘Traditional electrospray ionization tandem mass spectrometry(ESI-MS^(n))has been a powerful tool in diverse research areas,however,it faces great limitations in the study of protein-small molecule interactions.In this article,the state-of-the-art temperature-controlled electrospray ionization tandem mass spectrometry(TC-ESI-MS^(n))is applied to investigate interactions between ubiquitin and two flavonol molecules,respectively.The combination of collision-induced dissociation(CID)and MS solution-melting experiments facilitates the understanding of flavonol-protein interactions in a new dimension across varying temperature ranges.While structural changes of proteins disturbed by small molecules are unseen in ESI-MS^(n),TC-ESI-MS^(n)allows a simultaneous assessment of the stability of the complex in both gas and liquid phases under various temperature conditions,meanwhile investigating the impact on the protein’s structure and tracking changes in thermodynamic data,and the characteristics of structural intermediates.
基金Project supported by the National Natural Science Foundation of China(Grant No.12164030)Young Science and Technology Talents of Inner Mongolia,China(Grant No.NJYT22101)+1 种基金the Central Government Guides Local Science,the Technology Development Fund Projects(Grant No.2023ZY0005)the Science and Technology Plan Projects of Inner Mongolia Autonomous Region of China(Grant No.2023KYPT0012)。
文摘In the last few years,research on advanced ultrafast photonic devices has attracted great interest from laser physicists.As a semiconductor material with excellent nonlinear saturation absorption characteristics,Ga As has been used in solidstate and fiber lasers as a mode-locker.However,the pulse widths that have been reported in the searchable published literature are all long and the shortest is tens of picoseconds.Femtosecond pulse widths,desired for a variety of applications,have not yet been reported in Ga As-based pulsed lasers.In this work,we further explore the nonlinear characteristics of Ga As that has been magnetron sputtered onto the surface of a tapered fiber and its application in the generation of femtosecond lasing via effective dispersion optimization and nonlinearity management.With the enhanced interaction between evanescent waves and Ga As nanosheets,mode-locked soliton pulses as short as 830 fs are generated at repetition rates of 4.64 MHz.As far as we know,this is the first time that femtosecond-level pulses have been generated with a Ga As-based saturable absorber.In addition,soliton molecules,including in the dual-pulse state,are also realized under stronger pumping.This work demonstrates that Ga As-based photonic devices have good application prospects in effective polymorphous ultrashort pulsed laser generation.
基金Project supported by the Nature Science Foundation of Shaanxi Province (2023-JC-YB-137)National Natural Science Foundation of China (21901200)。
文摘Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.
基金funded by the National Key Research and Development Program of China(2022YFB2404500)the Shenzhen Outstanding Talents Training Fund(01090100002)the National Natural Science Foundation of China(52201280)。
文摘The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategies have been proposed,balancing the suppression of side reactions with the maintenance of fast Zn plating/stripping kinetics remains a significant challenge.In this study,sucrose,a sterically-hindered organic molecule with abundant hydroxyl groups,is employed to suppress the side reactions and maintain the moderate kinetics of Zn plating/stripping by modulating the hydrogen bond network without altering the Zn^(2+)solvation structure.Its steric hindrance effect further impedes the lateral diffusion of Zn atoms on the electrode surface within the electric double layer,effectively mitigating dendrite growth and stabilizing the electrodeposition process.Consequently,the formulated Suc/ZnSO_(4)electrolyte achieves a remarkably Coulombic efficiency of 99.90% over 2600 cycles at 3 mA cm^(-2)for 1 mAh cm^(-2)in Zn‖Cu cells.The enhanced Zn anode reversibility leads to excellent cycling stability in Zn‖LiFePO_(4)cells and Zn‖β-MnO_(2)cells.This study underscores the potential of sterically-hindered organic molecule strategies to enhance Zn anode stability while maintaining favorable Zn deposition/stripping dynamics in aqueous Zn batteries.
基金supported by the financial support from the National Research Foundation,Singapore,under its Singapore-China Joint Flagship Project(Clean Energy).
文摘Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA28110100 and XDA28020202)the National Key Research and Development Program of China(No.2022YFD1500203)+3 种基金the National Natural Science Foundation of China(No.42177332)the China Agriculture Research System(Nos.CARS-03 and CARS-52)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2023325)the Anhui Provincial Key Research and Development Project,China(No.2023n06020056).
文摘Straw return is the main practice used to increase soil organic matter(SOM)in agricultural ecosystems.To increase the efficiency of straw conversion to SOM,a large number of microbial inoculants have been developed.However,their effects are poor because of the complex water and temperature conditions,especially under sodic conditions.Small molecules can rapidly shift soil microbial communities and improve their ability to transform exogenous organic matter into SOM,providing a new direction for promoting high-efficiency straw conversion into SOM.In this study,we conducted a^(13)C-labeled straw degradation experiment using small molecules derived from lignin(LSMs)and humus(HSMs)as activators,investigating their effects on the microbial communities and formation of newly formed mineral-associated(^(13)C-MAOM)and particulate(^(13)C-POM)organic matter from^(13)C-labeled straw in both sodic and non-sodic soils.The^(13)C-labeled straw was mainly converted into^(13)C-MAOM,accounting for 73.97%–92.67%of the newly formed SOM.Biopolymer-derived small molecules decreased the exchangeable sodium percentage(ESP),but increased contents of^(13)C-MAOM and^(13)C-POM by shifting microbial communities,strengthening microbial cross-trophic interactions,enhancing enzyme activities,and increasing microbial residues in both soils.Addition of HSMs had greater impacts on^(13)C-MAOM formation than LSM addition.The^(13)C-MAOM and^(13)C-POM formation negatively correlated with ESP,but positively correlated with microbial cross-trophic interactions and enzyme activities in both soils.Our results suggest that biopolymer-derived small molecules promote^(13)C-MAOM and^(13)C-POM formation associated with microbial cross-trophic interactions between protistan predators and primary decomposers.Our study provides scientific support for future attempts to stimulate microbial cross-trophic interactions for boosting SOM accumulation under stressed conditions.
基金the Yunnan Fundamental Research Projects(Grant Nos.202501AT070298,202401AU070163,and 202401AT070368)the National Natural Science Foundation of China(Grant No.52162030)+5 种基金the Yunnan Major Scientific and Technological Projects(Grant No.202202AG050003)the Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(Grant No.2023-XMDJ-00617107)the University Service Key Industry Project of Yunnan Province(Grant No.FWCY-ZD2024005)the Yunnan Thousand Talents Program for Young Talents(Grant No.KKS2202052001)the Scientific Research Foundation of Kunming University of Science and Technology(Grant No.20220122)the Analysis and Testing Foundation of Kunming University of Science and Technology(Grant No.2023T20220122).
文摘The presence of residual alkaline compounds in the ultrahigh-nickel layered oxide cathodes(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x≥_(0.9))aggravates structural degradation,increases surface reactivity,and promotes slurry gelation,leading to the capacity decay of batteries with these cathodes and complicating their manufacturing.Traditional approaches for addressing this issue,including direct removal,coverage,and utilization,are complex and require surface regeneration.Herein,we propose neutralizing residual alkaline compounds with 3-thiopheneboronic acid(3-TBA)to improve the performance of LiNi_(0.9)5Co_(0.04)Mn_(0.01)O_(2)(NCM)cathode material,a facile strategy that does not require any post-treatment.The suggested reaction yields a uniform and thin organic-modified layer on the surface of the NCM cathode,improving its chemical stability toward the electrolyte,as demonstrated by multiple characterization methods.The modified NCM cathode exhibited impressive cyclic and rate performances,achieving a capacity retention of 83.34%after 200 cycles at 1.0 C and a specific capacity of 162.00 mAh·g^(−1) at 10.0 C.Most importantly,the proposed approach can efficiently suppress unfavorable phase transitions,severe electrolyte degradation,and CO_(2) gas evolution,improving the application potential of ultrahigh-nickel layered oxide cathode materials.
基金National Natural Science Foundation of China,Grant/Award Numbers:22279166,52002157National Institute of Education,Singapore,under its Academic Research Fund,Grant/Award Numbers:RI 1/21 EAH,RI 3/23 EAH+1 种基金China Postdoctoral Science Foundation,Grant/Award Numbers:2022M711686,2023M741471Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:SJCX24_2512。
文摘The architectural design of redox-active organic molecules and the modulation of their electronic properties significantly influence their application in energy storage systems within aqueous environments.However,these organic molecules often exhibit sluggish reaction kinetics and unsatisfactory utilization of active sites,presenting significant challenges for their practical deployment as electrode materials in aqueous batteries.In this study,we have synthesized a novel organic compound(PTPZ),comprised of a centrally symmetric and fully ladder-type structure,tailored for aqueous proton storage.This unique configuration imparts the PTPZ molecule with high electron delocalization and enhanced structural stability.As an electrode material,PTPZ demonstrates a substantial proton-storage capacity of 311.9mAh g^(-1),with an active group utilization efficiency of up to 89% facilitated by an 8-electron transfer process,while maintaining a capacity retention of 92.89% after 8000 chargingdischarging cycles.Furthermore,in-situ monitoring technologies and various theoretical analyses have pinpointed the associated electrochemical processes of the PTPZ electrode,revealing exceptional redox activity,rapid proton diffusion,and efficient charge transfer.These attributes confer a significant competitive advantage to PTPZ as an anode material for high-performance proton storage devices.Consequently,this work contributes to the rational design of organic electrode materials for the advancement of rechargeable aqueous batteries.
基金supported by the National Natural Science Foundation of China under Grant Nos.92265209,11174081 and 62305285the Natural Science Foundation of Chongqing under Grant No.CSTB2024NSCQ-MSX0643the Shanghai Municipal Science and Technology Major Project under Grant No.2019SHZDZX01。
文摘Quantum algorithms offer more enhanced computational efficiency in comparison to their classical counterparts when solving specific tasks.In this study,we implement the quantum permutation algorithm utilizing a polar molecule within an external electric field.The selection of the molecular qutrit involves the utilization of field-dressed states generated through the pendular modes of SrO.Through the application of multi-target optimal control theory,we strategically design microwave pulses to execute logical operations,including Fourier transform,oracle U_(f)operation,and inverse Fourier transform within a three-level molecular qutrit structure.The observed high fidelity of our outcomes is intricately linked to the concept of the quantum speed limit,which quantifies the maximum speed of quantum state manipulation.Subsequently,we design the optimized pulse sequence to successfully simulate the quantum permutation algorithm on a single SrO molecule,achieving remarkable fidelity.Consequently,a quantum circuit comprising a single qutrit suffices to determine permutation parity with just a single function evaluation.Therefore,our results indicate that the optimal control theory can be well applied to the quantum computation of polar molecular systems.
基金financially supported by the Open Project of Sanya Science and Education Innovation Park of Wuhan University of Technology(No.2022KF0005)Researchers Supporting Project(No.RSP-2024-R20)King Saud University,Riyadh,Saudi Arabia.
文摘As a recently emerging wastewater treatment technology,Algal-bacterial granular sludge(ABGS)process shows significant advantages.However,current research on the ABGS system is a lack of a clear and complete understanding of the potential mechanism of signal molecules on the growth of ABGS.This study comprehensively explores the variations in the ABGS under different N-acyl-homoserine lactone(AHL)conditions by constructing three sequencing batch reactor(SBR)systems.The results indicate that N-hexanoyl-l-homoserine lactone(C6-HSL)accelerates the granulation process in the early stages by promoting the loosely bound extracellular polymeric substances(LB-EPS)secretion and filamentous bacteria growth,thereby shortening required time for initial granule formation.On the other hand,N-(3-oxodecanoyl)-l-homoserine lactone(3-oxo-C12-HSL)expedites the granulation process by promoting the tightly bound extracellular polymeric substances(TB-EPS)and aromatic protein secretion,benefiting structural stability and nitrogen and phosphorus removal efficiency of mature ABGS.
基金the financial support from the Natural Science Foundation of Xiamen,China(3502Z202373075)the National Natural Science Foundation of China(Grant nos.22175180,52311530673,22103013)+1 种基金the Natural Science Foundation of Fujian Province(No.2023J01527,2021J01184,2024J01189)the Start-up funding from Fujian Normal University(Y0720312K13)。
文摘Exploring multifunctional interfacial modifiers is an effective approach to addressing interface issues in perovskite solar cells(PSCs)and improving device performance and stability.While most interfacial modifiers focus on passivating defects at the interfaces,there has been limited investigation into the relationship between molecular design and interfacial charge dynamics.This work introduces resonance molecules with a push-pull effect for interfacial modification,allowing for synergistic regulation of passivation effects and charge dynamics.Specifically,FCz-PO,which includes an electron-withdrawing fluorine atom,exhibits superior passivation but poor molecular stacking and charge extraction.In contrast,MCz-PO,featuring an electron-donating methoxy group,provides effective passivation,wellordered molecular packing,and efficient charge extraction and transport.Consequently,PSCs using MCz-PO achieve high power conversion efficiency(PCE)of 24.74%and excellent operational stability.This study suggests that resonance structures can be an effective molecular design strategy for developing interfacial modifiers with both strong passivation capabilities and well-regulated charge dynamics.