期刊文献+
共找到95,715篇文章
< 1 2 250 >
每页显示 20 50 100
Coarse-grained molecular dynamics simulations on self-assembly of polystyrene-block-poly(2-vinylpyridine)
1
作者 Daiwen Li Shoutian Qiu +6 位作者 Gan Liu Ming Liu Mingjie Wei Shipeng Sun Weihong Xing Xiaohua Lu Yong Wang 《Chinese Journal of Chemical Engineering》 2025年第7期15-25,共11页
Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)mole... Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level. 展开更多
关键词 Block copolymers self-assemblY Martini force field POLYMERS Computer simulation molecular simulation
在线阅读 下载PDF
Pillar[6]arene-based supramolecular self-assemblies for twopronged GSH-consumption-augmented chemo/photothermal therapy
2
作者 Yang Bai Xihua Li +3 位作者 Sijie Song Jing Yang Xia Liu Zhaowei Chen 《Nano Research》 SCIE EI CSCD 2023年第7期9921-9929,共9页
The abundant intracellular glutathione(GSH)in cancer cells severely undermines the therapeutic efficacy of different treatments due to their role in protecting cancer cells from the associated oxidative stress.Develop... The abundant intracellular glutathione(GSH)in cancer cells severely undermines the therapeutic efficacy of different treatments due to their role in protecting cancer cells from the associated oxidative stress.Developing a highly integrated system to consume GSH would help to improve the therapeutic outcomes.In this study,supramolecular prodrug self-assemblies(SPSAs)with IR825 loaded inside were developed to consume GSH via two-pronged pathways while augmenting the therapeutic potency of chemo/photothermal treatment.SPSAs were prepared using water-soluble pillar[6]arene(WP[6])as host units and H_(2)O_(2)-responsive nitrogen mustard prodrug,chlorambucil-(phenylboronic acid pinacol ester)conjugates(Cb-BE),as the vips.When SPSAs were internalized by cancer cells,the generation of quinone methide(QM)from Cb-BE and singlet oxygen(^(1)O_(2))from irradiation-activated IR825 could consume GSH in a concerted way.As such,the therapeutic efficacies of the released chlorambucil and the accompanied hyperthermia were augmented toward synergistically inhibiting tumor growth. 展开更多
关键词 supramolecular self-assemblies arene glutathione consumption chemo/photothermal therapy
原文传递
Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers
3
作者 Zhenzhu Wang Chenglong Liu +5 位作者 Yunpeng Ge Wencan Li Chenyang Zhang Bing Yang Shizhong Mao Zeyuan Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期179-182,共4页
Molecular weaving is a powerful approach to make molecularly woven materials that have showed unprecedented characteristics and properties intrinsically distinct to those of non-woven materials.We here report a facile... Molecular weaving is a powerful approach to make molecularly woven materials that have showed unprecedented characteristics and properties intrinsically distinct to those of non-woven materials.We here report a facile and efficient approach for the synthesis of 2D woven supramolecular polymers by differentiated self-assembly through orthogonal noncovalent interactions.Importantly,the difference in binding strength of two orthogonal noncovalent interactions can be used to control the process of molecular weaving.Consequently,single-layered 2D woven supramolecular polymers were synthesized and fully characterized by various techniques.This study demonstrates a controllable method for molecular weaving,and will significantly hasten the development of molecularly woven materials. 展开更多
关键词 Differentiated self-assembly Double-stranded helix molecular weaving Supramolecular chemistry Two-dimensional polymer
原文传递
Molecular Component Structures MediatedFormation of Self-assemblies 被引量:1
4
作者 YANG Wen-sheng , LU Ran, TANG Xin-yi and LI Tie-jin (Department of Chemistry, Jilin University, Changchun 130023, P. R. China) FU Lian-she and ZHANG Hong-jie (Changchun Institute of Applied Chemistry, Academia Sinica, Changchun 130022, P. R. China) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第2期198-201,共4页
Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process ... Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result- ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as- semblies was discussed in terms of intermolecular interactions. 展开更多
关键词 Intermolecular interaction molecular recognition MELAMINE Barbituric acid derivative self-assemblY
在线阅读 下载PDF
Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature
5
作者 Qingran Meng Wenwen Xu +2 位作者 Zuobing Xiao Qinfei Ke Xingran Kou 《Journal of Renewable Materials》 EI CAS 2024年第4期629-641,共13页
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact... Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with vip molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers. 展开更多
关键词 Epoxy-β-cyclodextrin SDS/DTAB self-assemblY TEMPERATURE morphological evolution
在线阅读 下载PDF
Fingerprint-enhanced hierarchical molecular graph neural networks for property prediction 被引量:1
6
作者 Shuo Liu Mengyun Chen +1 位作者 Xiaojun Yao Huanxiang Liu 《Journal of Pharmaceutical Analysis》 2025年第6期1311-1320,共10页
Accurate prediction of molecular properties is crucial for selecting compounds with ideal properties and reducing the costs and risks of trials.Traditional methods based on manually crafted features and graph-based me... Accurate prediction of molecular properties is crucial for selecting compounds with ideal properties and reducing the costs and risks of trials.Traditional methods based on manually crafted features and graph-based methods have shown promising results in molecular property prediction.However,traditional methods rely on expert knowledge and often fail to capture the complex structures and interactions within molecules.Similarly,graph-based methods typically overlook the chemical structure and function hidden in molecular motifs and struggle to effectively integrate global and local molecular information.To address these limitations,we propose a novel fingerprint-enhanced hierarchical graph neural network(FH-GNN)for molecular property prediction that simultaneously learns information from hierarchical molecular graphs and fingerprints.The FH-GNN captures diverse hierarchical chemical information by applying directed message-passing neural networks(D-MPNN)on a hierarchical molecular graph that integrates atomic-level,motif-level,and graph-level information along with their relationships.Addi-tionally,we used an adaptive attention mechanism to balance the importance of hierarchical graphs and fingerprint features,creating a comprehensive molecular embedding that integrated hierarchical mo-lecular structures with domain knowledge.Experiments on eight benchmark datasets from MoleculeNet showed that FH-GNN outperformed the baseline models in both classification and regression tasks for molecular property prediction,validating its capability to comprehensively capture molecular informa-tion.By integrating molecular structure and chemical knowledge,FH-GNN provides a powerful tool for the accurate prediction of molecular properties and aids in the discovery of potential drug candidates. 展开更多
关键词 Deep learning Hierarchical molecular graph molecular fingerprint molecular property prediction Directed message-passing neural network
在线阅读 下载PDF
Amphiphilic surfactant-heteropoly blue self-assemblies as high-performance photothermal conversion materials
7
作者 ZHAO Songying SHI Mingxin +4 位作者 LI Yingqi YAO Ruiqi WANG Yonghui TAN Huaqiao LI Yangguang 《分子科学学报》 2024年第5期396-410,共15页
Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely... Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely distributed solar energy and alleviate the world's freshwater scarcity.Herein,an amphiphilic photothermal membrane is prepared through the self-assembly of hydrophilic heteropoly blue(HPB,H_(3)PMo_(12)O_(40))and hydrophobic surfactant(dioctadecyl dimethyl ammonium bromide,DODA).Benefiting from the synergistic effects of alternating functional hydrophilic HPB and hydrophobic DODA layers,the flexible membrane based on two-dimensional DODA-HPB self-assemblies(DODA-HPB/Nylon66)exhibits superior photothermal conversion properties,showing promising prospects in applications of solar desalination and wastewater treatment. 展开更多
关键词 heteropoly blue SURFACTANT self-assemblies photothermal conversion AMPHIPHILIC
原文传递
Formation mechanism of herpetrione self-assembled nanoparticles based on p H-driven method 被引量:1
8
作者 Yuwen Zhu Xiang Deng +4 位作者 Yan Wu Baode Shen Lingyu Hang Yuye Xue Hailong Yuan 《Chinese Chemical Letters》 2025年第1期387-391,共5页
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method... The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method. 展开更多
关键词 Traditional Chinese medicine NANOPARTICLES Herpetrione Interaction pH-driven method self-assembly Isothermal titration calorimetry
原文传递
Recent advances and challenges in colorectal cancer:From molecular research to treatment 被引量:1
9
作者 Gao-Xiu Qi Rui-Xia Zhao +3 位作者 Chen Gao Zeng-Yan Ma Shang Wang Jing Xu 《World Journal of Gastroenterology》 2025年第21期1-30,共30页
Colorectal cancer(CRC)ranks among the top causes of cancer-related fatalities globally.Recent progress in genomics,proteomics,and bioinformatics has greatly improved our comprehension of the molecular underpinnings of... Colorectal cancer(CRC)ranks among the top causes of cancer-related fatalities globally.Recent progress in genomics,proteomics,and bioinformatics has greatly improved our comprehension of the molecular underpinnings of CRC,paving the way for targeted therapies and immunotherapies.Nonetheless,obstacles such as tumor heterogeneity and drug resistance persist,hindering advancements in treatment efficacy.In this context,the integration of artificial intelligence(AI)and organoid technology presents promising new avenues.AI can analyze genetic and clinical data to forecast disease risk,prognosis,and treatment responses,thereby expediting drug development and tailoring treatment plans.Organoids replicate the genetic traits and biological behaviors of tumors,acting as platforms for drug testing and the formulation of personalized treatment approaches.Despite notable strides in CRC research and treatment-from genetic insights to therapeutic innovations-numerous challenges endure,including the intricate tumor microen-vironment,tumor heterogeneity,adverse effects of immunotherapies,issues related to AI data quality and privacy,and the need for standardization in organoid culture.Future initiatives should concentrate on clarifying the pathogenesis of CRC,refining AI algorithms and organoid models,and creating more effective therapeutic strategies to alleviate the global impact of CRC. 展开更多
关键词 Colorectal cancer molecular TREATMENT Artificial intelligence Organoid
暂未订购
Three-dimensional carbon microclusters organized by hollow carbon nanospheres for stable Li metal anodes:enabling high packing density and low tortuosity via self-assembly 被引量:1
10
作者 Du Yeol Jo Jae Bong Lim +2 位作者 Jin Koo Kim Yun Chan Kang Seung-Keun Park 《Rare Metals》 2025年第1期95-109,共15页
Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practica... Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life. 展开更多
关键词 Li metal host Hollow carbon nanosphere Carbon microclusters self-assemblY TORTUOSITY Spray drying
原文传递
Molecular breakthroughs in modern plant breeding techniques 被引量:1
11
作者 Mughair Abdul Aziz Khaled Masmoudi 《Horticultural Plant Journal》 2025年第1期15-41,共27页
Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in... Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods. 展开更多
关键词 Plant breeding molecular approaches GENOTYPE PHENOTYPE Crop traits
在线阅读 下载PDF
Mechanism Study on the Effect of Retarder on Polyurethane Setting Time Based on Molecular Simulation
12
作者 WU Yuxuan XU Wenyuan +1 位作者 YU Tianlai JI Yongcheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期224-231,共8页
This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setti... This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setting time of polyurethane was further investigated using molecular dynamics simulations.Fourier transform infrared spectroscopy was also employed to systematically study the physical and chemical interactions between phosphate esters and polyurethane materials.The results demonstrate that a 1%concentration of phosphate ester provides the most effective retarding effect with minimal impact on the strength of polyurethane.When phosphate ester is added to the B component of the two-component polyurethane system,its interaction energy with component A decreases,as do the diffusion coefficient and aggregation degree of component B on the surface of component A.This reduction in interaction slows the setting time.Additionally,the addition of phosphate ester to polyurethane leads to the disappearance or weakening of functional groups,indicating competitive interactions within the phosphate ester components that inhibit the reaction rate. 展开更多
关键词 POLYURETHANE RETARDER setting time molecular dynamics diffusion coefficient
原文传递
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
13
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
Self-Assembly of Highly Stable Nanoparticles by Amphiphilic Glycolurils for Efficient Intracellular Short DNA Delivery
14
作者 Guo Congying Gao Rui +4 位作者 Li Qian Wang Hui Zhang Danwei Zhou Wei Li Zhan-Tingo 《有机化学》 北大核心 2025年第8期2945-2952,共8页
Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,whic... Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity. 展开更多
关键词 self-assemblY GLYCOLURIL AMPHIPHILICITY NANOPARTICLE DNA delivery
原文传递
Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp.HL-50 guided by molecular networking and their antiinflammatory activity 被引量:1
15
作者 Chunxue Yu Zixuan Xia +6 位作者 Zhipeng Xu Xiyang Tang Wenjuan Ding Jihua Wei Danmei Tian Bin Wu Jinshan Tang 《Chinese Journal of Natural Medicines》 2025年第1期119-128,共10页
Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid ... Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid of curvularin and purine.The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance(NMR)spectroscopy,X-ray diffraction,electronic circular dichroism(ECD)calculations,^(13)C NMR calculation,modified Mosher's method,and chemical derivatization.Investigation of anti-inflammatory activities revealed that compounds 7-9,11,12,14,15,and 18 exhibited significant suppressive effects against lipopolysaccharide(LPS)-induced nitric oxide(NO)production in murine macrophage RAW264.7 cells,with IC_(50)values ranging from 0.44 to 4.40μmol·L^(-1).Furthermore,these bioactive compounds were found to suppress the expression of inflammation-related proteins,including inducible NO synthase(i NOS),cyclooxygenase-2(COX-2),NLR family pyrin domain-containing protein 3(NLRP3),and nuclear factor kappa-B(NF-κB).Additional studies demonstrated that the novel compound 7 possessed potent antiinflammatory activity by inhibiting the transcription of inflammation-related genes,downregulating the expression of inflammation-related proteins,and inhibiting the release of inflammatory cytokines,indicating its potential application in the treatment of inflammatory diseases. 展开更多
关键词 Penicillium sp.HL-50 Curvularin derivatives molecular networking Anti-inflammatory activity
原文传递
pH modulation and molecular layer construction for stable zinc batteries 被引量:1
16
作者 Donghong Wang Qiwang Shao +5 位作者 Xianjia Cao Mengxuan Qin Yizhu He Lei Zhu Qing Li Dongming Liu 《Journal of Energy Chemistry》 2025年第3期179-188,共10页
Aqueous zinc-ion batteries(AZIBs)have regained interest due to their inherent safety and costeffectiveness.However,the zinc anode is notorious for side reactions and dendrite growth,which plague the practical applicat... Aqueous zinc-ion batteries(AZIBs)have regained interest due to their inherent safety and costeffectiveness.However,the zinc anode is notorious for side reactions and dendrite growth,which plague the practical application of AZIBs.Adjusting the interfacial pH to reduce the by-products has been proven to be effective in protecting the zinc anode.Nevertheless,the dynamic regulation of the inherently unstable zinc interface during prolonged cycling remains a significant challenge.Herein,zwitterionic N-tris(hydroxymethyl)methylglycine(TMG)integrated with negative-COO^(-)and positive NH_(2)^(+)groups is proposed to stabilize the Zn anode and extend the lifespan as a self-regulating interfacial additive.The anionic portion serves as a trapping site to balance the interfacial pH and thus mitigate the unintended side reactions.Simultaneously,the NH_(2)^(+)cations are anchored on the zinc surface,forming a water-shielding,zincophilic molecular layer that guides three-dimensional diffusion and promotes uniform electro-deposition.Thus,an average plating efficiency of 99.74%over 3300 cycles at a current density of2 mA cm^(-2)is achieved.Notably,the TMG additive actualizes ultralong life in Zn‖Zn symmetrical cells(5500 h,exceeding 229 days,1 mA cm^(-2)/1 mA h cm^(-2)),and enables the Zn‖I_(2)cells to reach capacity retention rate of 89.4%after 1000 cycles at 1 A g^(-1). 展开更多
关键词 Aqueous zinc ion battery Zn dendrites pHDynamic regulation molecular layer Zn-12
在线阅读 下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
17
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
Precursor-chemistry engineering toward ultrapermeable carbon molecular sieve membrane for CO_(2)capture 被引量:1
18
作者 Mengjie Hou Lin Li +5 位作者 Ruisong Xu Yunhua Lu Jing Song Zhongyi Jiang Tonghua Wang Xigao Jian 《Journal of Energy Chemistry》 2025年第3期421-430,共10页
Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)ca... Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)capture.It is urgently needed for membrane-based CO_(2)capture to develop the high-performance membrane materials with high permeability,selectivity,and stability.Herein,ultrapermeable carbon molecular sieve(CMS)membranes are fabricated by py roly zing a finely-engineered benzoxazole-containing copolyimide precursor for efficient CO_(2)capture.The microstructure of CMS membrane has been optimized by initially engineering the precursor-chemistry and subsequently tuning the pyrolysis process.Deep insights into the structure-property relationship of CMSs are provided in detail by a combination of experimental characterization and molecular simulations.We demonstrate that the intrinsically high free volume environment of the precursor,coupled with the steric hindrance of thermostable contorted fragments,promotes the formation of loosely packed and ultramicroporous carbon structures within the resultant CMS membrane,thereby enabling efficient CO_(2)discrimination via size sieving and affinity.The membrane achieves an ultrahigh CO_(2)permeability,good selectivity,and excellent stability.After one month of long-term operation,the CO_(2)permeability in the mixed gas is maintained at 11,800 Barrer,with a CO_(2)/N_(2)selectivity exceeding 60.This study provides insights into the relationship between precursor-chemistry and CMS performance,and our ultrapermeable CMS membrane,which is scalable using thin film manufacturing,holds great potential for industrial CO_(2)capture. 展开更多
关键词 CO_(2)capture Gas separation Carbon molecular sieve membrane precursor-chemistry
在线阅读 下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
19
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers molecular structure Design strategies
在线阅读 下载PDF
Stability of hole-selective self-assembled monolayers in inverted perovskite solar cells
20
作者 Yiting Zheng Tingting Niu +2 位作者 Lingfeng Chao Yingdong Xia Yonghua Chen 《Journal of Energy Chemistry》 2025年第8期74-86,共13页
Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivati... Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivation defects.However,the stability of the SAM molecules,the stability of the molecular anchoring conformation,and the impact on the stability of subsequent PSCs have not been clearly elucidated.In this review,we systematically discussed the intrinsic connection between the molecular conformation(including anchoring groups,spacer groups,and terminal groups)and the stability of SAMs.Sequentially,the research progress of SAMs as HSLs in improving the stability of PSCs is summarized,including photostability,thermal stability,ion migration,and residual stress.Finally,we look forward to the shortcomings and possible challenges of using SAMs as HSLs for inverted PSCs. 展开更多
关键词 Inverted perovskite solar cells self-assembled monolayers STABILITY molecular structure
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部