期刊文献+
共找到800篇文章
< 1 2 40 >
每页显示 20 50 100
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
1
作者 何茜 徐子翼 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期603-612,共10页
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced... Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials. 展开更多
关键词 NANOINDENTATION twin boundary plastic deformation molecular dynamics simulation
原文传递
Molecular Dynamic Simulation on the Absorbing Process of Isolating and Coating of α-olefin Drag Reducing Polymer 被引量:1
2
作者 李冰 盛翔 +6 位作者 邢文国 董桂霖 刘永军 张长桥 陈祥俊 周宁宁 秦占波 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期630-636,745,共8页
The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles wit... The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent. 展开更多
关键词 molecular dynamic simulation Coating process Multiple hydroxyl compound Addition polymerization Optimal selection Isolation agent
在线阅读 下载PDF
Molecular Dynamic Simulation of Melting Points of Trans-1,4,5,8- tetranitro-1,4,5,8-tetraazadacalin (TNAD) with Some Propellants
3
作者 李小红 居学海 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期412-418,J0001,共8页
Molecular dynamic simulation was employed to predict the melting points Tm of TNAD/HMX, TNAD/RDX, TNAD/DINA, and TNAD/DNP systems (tans-1,4,5,8- tetranitro-1,4,5,8-tetraazadacalin (TNAD), dinitropiperazine (DNP),... Molecular dynamic simulation was employed to predict the melting points Tm of TNAD/HMX, TNAD/RDX, TNAD/DINA, and TNAD/DNP systems (tans-1,4,5,8- tetranitro-1,4,5,8-tetraazadacalin (TNAD), dinitropiperazine (DNP), cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), and N-nitrodihydroxyethylaminedinitrate (DINA)). Tm was determined from the inflexion point on the curve of mean specific volume vs. temperature. The result shows that the Tm values of TNAD/HMX, TNAD/RDX, and TNAD/DINA systems are 500, 536, and 488 K, respectively. The TNAD/DNP system has no obvious Tm value, which shows the system is insoluble. Using Tm, the solubility of the four systems was analyzed. The radial distribution functions of the four systems were analyzed and the main intermolecular forces between TNAD and other energetic components are short-range interactions. The better the solubility is, the stronger the intermoleenlar interaction is. In addition, the force field energy at different temperature was also analyzed to predict Tm of the four systems. 展开更多
关键词 Melting point molecular dynamic simulation Radial distribution function Force field energy Trans-1 4 5 8-tetranitro-1 4 5 8-tetraazadaealin (TNAD)
在线阅读 下载PDF
Effect of Chain Configuration on Thermal Conductivity of Polyethylene-A Molecular Dynamic Simulation Study 被引量:7
4
作者 Xiang Zhang Yu Wang +4 位作者 Ru Xi Bin Wu Peng Chen Jia Sheng Qian Hao-Jun Liang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第12期1418-1425,共8页
Stretched polyethylene(PE)fibers are found to have super high thermal conductivity,while the bulk of polyethylene is usually thermal insulating even for those with high crystalline degree.A molecular dynamic simulatio... Stretched polyethylene(PE)fibers are found to have super high thermal conductivity,while the bulk of polyethylene is usually thermal insulating even for those with high crystalline degree.A molecular dynamic simulation is deliberately carried out to examine the relationship between chain configuration and thermal conductivity of polyethylene.In this simulation study,independent and interacting PE chains being stretched are compared with the aim to find out the effect of stretching on thermal conductivity of PE.Various crystallization conditions for PE bulk are considered.It is found that heat transports predominately along the covalent chain rather than across chains in PE crystals.Our simulation study helps to understand experimental findings on thermal conductivity of PE at different states.W e also predict that amorphous PE may be super thermally conductive if chains are strictly stretched along heat flux. 展开更多
关键词 Thermal conductivity molecular dynamic simulation POLYETHYLENE Chain configuration
原文传递
Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard Jones fluids by non-equilibrium molecular dynamic simulation 被引量:4
5
作者 Ahmed Asad 吴江涛 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期362-367,共6页
We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with t... We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature. 展开更多
关键词 self-diffusion coefficient non-equilibrium molecular dynamic simulation Lennard Jonesfluid critical dynamics
原文传递
Understanding sequence effect in DNA bending elasticity by molecular dynamic simulations 被引量:2
6
作者 Xiao-Wei Qiang Hai-Long Dong +2 位作者 Kai-Xin Xiong Wenbing Zhang Zhi-Jie Tan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第7期127-135,共9页
Structural elasticity of double-strand DNAs is very important for their biological functions such as DNA-ligand binding and DNA-protein recognition.By all-atom molecular dynamics simulations,we investigated the bendin... Structural elasticity of double-strand DNAs is very important for their biological functions such as DNA-ligand binding and DNA-protein recognition.By all-atom molecular dynamics simulations,we investigated the bending elasticity of DNA with three typical sequences including poly(A)-poly(T)(AA-TT),poly(AT)-poly(TA)(AT-TA),and a generic sequence(GENE).Our calculations indicate that,AA-TT has an apparently larger bending persistence length(P~63 nm)than GENE(P~49 nm)and AT-TA(P~48 nm)while the persistence length of AT-TA is only very slightly smaller than that of GENE,which agrees well with those from existing works.Moreover,through extensive electrostatic calculations,we found that the sequence-dependent bending elasticity is attributed to the sequence-dependent electrostatic bending energy for AA-TT,AT-TA and GENE,which is coupled to their backbone structures.Particularly,the apparently stronger bending stiffness of AA-TT is attributed to its narrower minor groove.Interestingly,for the three DNAs,we predicted the non-electrostatic persistence length of~17 nm,thus electrostatic interaction makes the major contribution to DNA bending elasticity.The mechanism of electrostatic energy dominating sequence effect in DNA bending elasticity is furtherly illustrated through the electrostatic calculations for a grooved coarse-grained DNA model where minor groove width and other microscopic structural parameters can be artificially adjusted. 展开更多
关键词 DNA elasticity molecular dynamic simulation persistence length electrostatic interaction
原文传递
Molecular dynamic simulation of lubricant spreading: effect from the substrate and endbead
7
作者 李欣 胡元中 +1 位作者 王慧 杨冬 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期818-821,共4页
Molecular dynamic simulations based on a coarse-gralned, bead-spring model are adopted to investigate the spreading of both nonfunctional and functional perfluoropolyether (PFPE) on solid substrates. For nonfunction... Molecular dynamic simulations based on a coarse-gralned, bead-spring model are adopted to investigate the spreading of both nonfunctional and functional perfluoropolyether (PFPE) on solid substrates. For nonfunctional PFPE, the spreading generally exhibits a smooth profile with a precursor film. The spreading profiles on different substrates are compared, which indicate that the bead-substrate interaction has a significant effect on the spreading behaviour, especially on the formation of the precursor film. For functional PFPE, the spreading generally exhibits a complicated terraced profile. The spreading profiles with different endbeads are compared, which indicate that the endbead-substrate interaction and the endbead-endbead interaction, especially the latter, have a significant effect on the spreading behaviour. 展开更多
关键词 PERFLUOROPOLYETHER molecular dynamic simulation thin film lubrication SPREADING
原文传递
Study of structural and magnetic properties of Fe(80)P-9B(11) amorphous alloy by ab initio molecular dynamic simulation
8
作者 朱力 王寅岗 +1 位作者 曹成成 孟洋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期315-318,共4页
The structural and magnetic properties of Fe80P9B11 amorphous alloy are investigated through ab initio molecular dynamic simulation. The structure evolution of Fe(80)P9B(11) amorphous alloy can be described in the... The structural and magnetic properties of Fe80P9B11 amorphous alloy are investigated through ab initio molecular dynamic simulation. The structure evolution of Fe(80)P9B(11) amorphous alloy can be described in the framework of topological fluctuation theory, and the fluctuation of atomic hydrostatic stress gradually decreases upon cooling. The left sub peak of the second peak of Fe–B partial pair distribution functions(PDFs) becomes pronounced below the glass transition temperature, which may be the major reason why B promotes the glass formation ability significantly. The magnetization mainly originates from Fe 3d states, while small contribution results from metalloid elements P and B. This work may be helpful for developing Fe-based metallic glasses with both high saturation flux density and glass formation ability. 展开更多
关键词 amorphous alloy ab initio molecular dynamic simulation local atomic structure magnetic properties
原文传递
Molecular Dynamic Simulation of Lattice Distortion Region Produced by Rounded Grain Boundary in Nanocrystalline Materials
9
作者 XiaoweiWANG J.Rifkin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第3期254-256,共3页
The distortion structure in nanocrystalline NiAl is studied using molecular dynamics simulation. The rounded grain boundaries in these nanograins are a direct source for the observed lattice distortion. The change of ... The distortion structure in nanocrystalline NiAl is studied using molecular dynamics simulation. The rounded grain boundaries in these nanograins are a direct source for the observed lattice distortion. The change of grain size affects directly the volume fraction of the distorted lattice in the nanograin. 展开更多
关键词 molecular dynamic simulation NANOCRYSTALLINE Distortion region
在线阅读 下载PDF
Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
10
作者 王宇杰 王珍 +1 位作者 王晏莉 张文炳 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期1-6,共6页
A nucleotide base pair is the basic unit of RNA structures. Understanding the thermodynamic and kinetic properties of the closing and opening of a base pair is vital for quantitative understanding the biological funct... A nucleotide base pair is the basic unit of RNA structures. Understanding the thermodynamic and kinetic properties of the closing and opening of a base pair is vital for quantitative understanding the biological functions of many RNA molecules. Due to the fast transition rate, it is difficult to directly observe opening and closing of single nucleic acid base pair in experiments. This review will provide a brief summary of the studies about the thermodynamic and kinetic properties of a base pair opening and closing by using molecular dynamic simulation methods. 展开更多
关键词 THERMOdynamicS KINETICS molecular dynamic simulation
原文传递
Atomic scale imaging of monocrystalline Si (001) surface by molecular dynamic simulation
11
作者 窦建华 梁迎春 +2 位作者 白清顺 宫娜 董申 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期879-883,共5页
Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuh... Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuhs show that the nc-AFM imaging force mainly comes from the C-Si and C-C chemical covalent bonding forces, especially the former, the nonbonding Van der Waals force change is small during the range of stable imaging height. When the tip-surface distance is smaller than the stable imaging height, several neighboring carbon atoms at the tip apex are attracted, and some of them jump onto the sample surface. Finally the tip apex configuration is destroyed with the tip indenting further. 展开更多
关键词 molecular dynamic simulation carbon nanotube IMAGING non-contact AFM
在线阅读 下载PDF
Studies on sensitivity to tension and gating pathway of MscL by molecular dynamic simulation
12
作者 Jun-Yu Xie Guang-Hong Ding 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第2期256-266,共11页
Mechanosensitive(MS) ion channels play an important role in various physiological processes.Although the determination of the structure of mechanosensitive channel of large conductance(MscL) makes the simulation s... Mechanosensitive(MS) ion channels play an important role in various physiological processes.Although the determination of the structure of mechanosensitive channel of large conductance(MscL) makes the simulation study possible,it has not so far been possible to directly simulate the gating mechanism of MscL in atomic detail.In this article,MscL has been studied via molecular dynamic(MD) simulations to gain a detailed description of the sensitivity to lateral tension and the gating pathway.MscL undergoes conformational rearrangement in sustaining lateral tension,and the open state is obtained when 2.0 MPa lateral tension is directly applied on the pure protein.During the opening process,Loop region responds to tension first,and the mechanical sensitivity is followed by S1 domain.Transmembrane(TM) bundle is the key position for channel opening,and the motion of TM1 helices finally realizes the significant expansion of the constricted gating pore.C-terminus domain presents expansion later during the TM opening.In our study,return of the whole protein to the initial closed state is achieved only in the early opening stage.During the relaxation from the open state,the TM helices are the most mobile domain,which is different from the opening process. 展开更多
关键词 molecular dynamic simulation·MscL·Lateral tension·Sensitivity·Gating pathway
在线阅读 下载PDF
Cholesterol modulating the orientation of His17 in hepatitis C virus p7 (5a) viroporin--A molecular dynamic simulation study
13
作者 Yuebin Zhang Xiangda Peng +3 位作者 Hong Ren Huiying Chu Yan Li Guohui Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期719-723,共5页
Protein p7 of HCV is a 63 amino acid channel forming membrane protein essential for the progression ofviral infection and the sensitivity of this channel to small-molecule inhibitors renders p7 a potentialtarget for n... Protein p7 of HCV is a 63 amino acid channel forming membrane protein essential for the progression ofviral infection and the sensitivity of this channel to small-molecule inhibitors renders p7 a potentialtarget for novel therapies against HCV infection. Previous biochemical experiments suggested that theHis17 of p7 is a pore-lining residue and solvated-exposed to participate in channel gating. However, arecent NMR structural identification of the p7 hexamer in dodecylphosphocholine (DPC) micellesindicated that the His17 is embedded into the protein matrix. In this work, we performed moleculardynamic simulations to bridge the controversial observations. Our results illustrated that byincorporating the cholesterol into DOPC membranes to mimic an actual membrane-like composition,the orientation of His17 in the hexameric bundles spontaneously access to the central pore region,indicating a versatile property of the p7 viroporin conformation that could be voluntarily influenced byits surrounding environments. 展开更多
关键词 Hepatitis C virus p7 Viroporin Cholesterol molecular dynamic simulation Conformational transition
原文传递
Study of Friction between Liquid Crystals and Crystalline Surfaces by Molecular Dynamic Simulations
14
作者 Yong-Wen Zhang Xiao-Song Chen Wei Chen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第10期467-473,共7页
The lubrication characteristics of liquid crystal(LC) molecules sheared between two crystalline surfaces obtained from molecular dynamics(MD) simulations are reported in this article.We consider a coarse-grained rigid... The lubrication characteristics of liquid crystal(LC) molecules sheared between two crystalline surfaces obtained from molecular dynamics(MD) simulations are reported in this article.We consider a coarse-grained rigid bead-necklace model of the LC molecules confined between two atomic surfaces subject to different shearing velocities.A systematic study shows that the slip length of LC lubrication changes significantly as a function of the LC-surface interaction energy,which can be well described though a theoretical curve.The slip length increases as shear rate increases at high LC-surface interaction energy.However,this trend can not be observed for low interaction energy.The orientation of the LC molecules near the surface is found to be guided by the atomics surfaces.The influence of temperature on the lubrication characteristics is also discussed in this article. 展开更多
关键词 liquid crystal FRICTION slip length molecular dynamics simulation
原文传递
Inhibition Mechanism of Hydroxyproline-like Small Inhibitors to Disorder HIF-VHL Interaction by Molecular Dynamic Simulations and Binding Free Energy Calculations
15
作者 Mingsong Shi Xin Zhou +6 位作者 Yao Cai Penghui Li Dengxue Qin Xinrong Yan Meng Du Shuo Li Dingguo Xu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期814-824,I0003,I0079-I0088,共22页
Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In... Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In order to disrupt this interaction,the strategy to target VHL binding site using a hydroxyproline-like(pro-like)small molecule has been reported.In this study,we focused on the inhibition mechanism between the pro-like inhibitors and the VHL protein,which were investigated via molecular dynamics simulations and binding free energy calculations.It was found that pro-like inhibitors showed a strong binding affinity toward VHL.Binding free energy calculations and free energy decompositions suggested that the modification of various regions of pro-like inhibitors may provide useful information for future drug design. 展开更多
关键词 Von Hippel Lindau Hypoxia-inducible factor Inhibitor molecular dynamics simulation Binding free energy
在线阅读 下载PDF
Influence of Intermolecular Forces and Spatial Effects on the Mechanical Properties of Silicone Sealant by Molecular Dynamics Simulation
16
作者 Wen Qi Yu-Fei Du +2 位作者 Bo-Han Chen Gui-Lei An Chun Lu 《Computers, Materials & Continua》 2025年第11期2763-2780,共18页
In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral ... In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral oil is prone to premature aging,which significantly reduces the mechanical properties of the silicone sealant and severely affects its service life.At the same time,there are few reports on the simulation research of the performance of silicone sealant.In this study,three mixed system models of crosslinking silicone sealant/plasticizer are constructed by the molecular dynamics simulationmethod,and the effect of three influencing factors,namely,crosslinking degree of silicone sealant,plasticizer content and external temperature on the mechanical properties of silicone sealant system is analyzed.The results show that at room temperature,the mechanical properties of the silicone sealant system are enhanced with the increase of its crosslinking degree;At a high crosslinking degree,with the increase of plasticizer content,themechanical properties of the silicone sealant system show an overall decreasing trend.When the methyl silicone oil in the range of 20%,themechanical properties of the silicone sealant appeared tobe a small degree of enhancement;As the temperature increases,the doped mineral oil mechanical properties of silicone sealant declined significantly,while doped with methyl silicone oil silicone sealant and doped with double-ended vinyl silicone oil silicone sealant mechanical properties have better heat resistance.It will provide scientific theoretical guidance for improving and predicting the mechanical properties of silicone sealant. 展开更多
关键词 Silicone sealant molecular dynamic simulation MICROSTRUCTURE mechanical property cross-linking
在线阅读 下载PDF
Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation
17
作者 Jinqi Yang Xiaoxiang Hu +5 位作者 Yuanyuan Zhang Lingyu Zhao Chunlin Yue Yuan Cao Yangyang Zhang Zhenwen Zhao 《Chinese Chemical Letters》 2025年第5期354-359,共6页
The bioactive constituents found in natural products(NPs)are crucial in protein-ligand interactions and drug discovery.However,it is difficult to identify ligand molecules from complex NPs that specifically bind to ta... The bioactive constituents found in natural products(NPs)are crucial in protein-ligand interactions and drug discovery.However,it is difficult to identify ligand molecules from complex NPs that specifically bind to target protein,which often requires time-consuming and labor-intensive processes such as isolation and enrichment.To address this issue,in this study we developed a method that combines ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry(UHPLCESI-MS)with molecular dynamics(MD)simulation to identify and observe,rapidly and efficiently,the bioactive components in NPs that bind to specific protein target.In this method,a specific protein target was introduced online using a three-way valve to form a protein-ligand complex.The complex was then detected in real time using high-resolution MS to identify potential ligands.Based on our method,only 10 molecules from green tea(a representative natural product),including the commonly reported epigallocatechin gallate(EGCG)and epicatechin gallate(ECG),as well as the previously unreported eepicatechin(4β→8)-epigallocatechin 3-O-gallate(EC-EGCG)and eepiafzelechin 3-O-gallate-(4β→8)-epigallocatechin 3-O-gallate(EFG-EGCG),were screened out,which could form complexes with Aβ_(1-42)(a representative protein target),and could be potential ligands of Aβ_(1-42).Among of them,EC-EGCG demonstrated the highest binding free energy with Aβ_(1-42)(−68.54±3.82 kcal/mol).On the other side,even though the caffeine had the highest signal among green tea extracts,it was not observed to form a complex with Aβ_(1-42).Compared to other methods such as affinity selection mass spectrometry(ASMS)and native MS,our method is easy to operate and interpret the data.Undoubtedly,it provides a new methodology for potential drug discovery in NPs,and will accelerate the research on screening ligands for specific proteins from complex NPs. 展开更多
关键词 Natural products(NPS) Ligands screening Mass spectrum(MS) molecular dynamic simulation(MDS) Post-column modification Amyloidβ-peptide 42(A_(β1-42)) Green tea
原文传递
A molecular dynamics simulation route towards Eu-doped multi-component transparent spectral conversion glass-ceramics
18
作者 Xiuxia Xu Chenhao Wang +7 位作者 Di Wang Wenyan Zheng Zhiyu Liu Jincheng Du Xusheng Qiao Xianping Fan Zhiyu Wang Guodong Qian 《Journal of Rare Earths》 2025年第1期146-152,I0006,共8页
Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2... Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2):Eu^(2+)doped fluorosilicate glass and to vividly observe the glass microstructure in experiment through traditional trial-and-error glass preparation method.BaF_(2):Eu^(2+)doped fluorosilicate glassceramics with high transparency,and high photoluminescence(PL)performance were predicted,designed and prepared via molecular dynamics(MD)simulation method.By MD simulation prediction,self-organized nanocrystallization was realized to inhibit the abnormal growth of nanocrystals due to[AlO_(4)]tetrahedra formed in the fluoride-oxide interface.The introduction of NaF reduces the effective phonon energy of the glass because Na+will prompt Al^(3+)to migrate from the fluoride phase to the silicate phase and interface.The local environment of Eu^(2+)is optimized by predicting the doping concentration of EuF_(3) and 2 mol%EuF3 is the best concentration in this work.Glass-ceramics sample GC2Eu as spectral conversion layer was successfully applied on organic solar cells to obtain more available visible phonons with a high photoelectric conversion efficiency(PCE).This work confirms the guidance of molecular dynamics simulation methods for fluorosilicate glasses design. 展开更多
关键词 molecular dynamics simulation Fluorosilicateglass Spectral conversion Organic solarcell RAREEARTHS
原文传递
Influence of Pressure on the Co-nonsolvency Effect of Homopolymer in Solutions:A Molecular Dynamics Simulation Study
19
作者 Zhi-Yuan Wang Xing-Ye Li +4 位作者 Zheng Wang Yu-Hua Yin Run Jiang Peng-Fei Zhang Bao-Hui Li 《Chinese Journal of Polymer Science》 2025年第10期1929-1938,共10页
Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regula... Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents. 展开更多
关键词 molecular dynamics simulation Mixed solvent Co-nonsolvency PRESSURE Chain conformation
原文传递
DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing
20
作者 Zhimin Song Zhe Tang +4 位作者 Yu Zhang Yanru Zhou Xiaozheng Duan Yan Du Chong-Bo Ma 《Chinese Chemical Letters》 2025年第10期453-458,共6页
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth... Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity. 展开更多
关键词 Single-atom nanozymes DNA-regulated biosensors molecular dynamics simulations Colorimetric aptasensing Point-of-care diagnostics
原文传递
上一页 1 2 40 下一页 到第
使用帮助 返回顶部