Deep tissue pressure injuries(DTPIs)have witnessed a growing prevalence in hospitals and other health care units especially among individuals with pathological conditions that give rise to restricted mobility,impaired...Deep tissue pressure injuries(DTPIs)have witnessed a growing prevalence in hospitals and other health care units especially among individuals with pathological conditions that give rise to restricted mobility,impaired sensation,and reduced tissue tolerance.The etiology of DTPIs has been a subject of controversy,to which several explanatory models have been proposed,including direct mechanical insult,ischemia-reperfusion,lymphatic occlusion,and inflammatory cytokines.In line with these pathophysiological scenarios,ultrasound,subepidermal moisture detection,and biomarker technologies have been proposed as potential early detection methods of DTPIs.This paper provides a systematic review involving these three methods.The conclusion is that combining and implementing these methods at different time periods during DTPIs development and progression respectively is likely to be the most universal,effective and promising way for DTPIs diagnosis.展开更多
Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied o...Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in vip-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-vip complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.展开更多
基金the Shanghai Pujiang Program(No.19PJ1406400)the Interdisciplinary Program of Shanghai Jiao Tong University(Nos.YG2019ZDB02 and YG2021QN142)。
文摘Deep tissue pressure injuries(DTPIs)have witnessed a growing prevalence in hospitals and other health care units especially among individuals with pathological conditions that give rise to restricted mobility,impaired sensation,and reduced tissue tolerance.The etiology of DTPIs has been a subject of controversy,to which several explanatory models have been proposed,including direct mechanical insult,ischemia-reperfusion,lymphatic occlusion,and inflammatory cytokines.In line with these pathophysiological scenarios,ultrasound,subepidermal moisture detection,and biomarker technologies have been proposed as potential early detection methods of DTPIs.This paper provides a systematic review involving these three methods.The conclusion is that combining and implementing these methods at different time periods during DTPIs development and progression respectively is likely to be the most universal,effective and promising way for DTPIs diagnosis.
基金supported by National Natural Science Foundation of China(No.22278308,22109114 and 22102099)。
文摘Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in vip-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-vip complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.