期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Classification of hypersurfaces with two distinct principal curvatures and closed Mbius form in S^(m+1) 被引量:6
1
作者 LINLiMiao GU0Zhen 《Science China Mathematics》 SCIE 2012年第7期1463-1478,共16页
Let x be an m-dimensional umbilic-free hypersurface in an (m+1)-dimensional unit sphere Sm+l (m≥3). In this paper, we classify and explicitly express the hypersurfaces with two distinct princi- pal curvatures a... Let x be an m-dimensional umbilic-free hypersurface in an (m+1)-dimensional unit sphere Sm+l (m≥3). In this paper, we classify and explicitly express the hypersurfaces with two distinct princi- pal curvatures and closed MSbius form, and then we characterize and classify conformally flat hypersurfaces of dimension larger than 3. 展开更多
关键词 moebius geometry principal curvature conformally fiat MSbius form
原文传递
Surfaces with Isotropic Blaschke Tensor in S^3 被引量:1
2
作者 Feng Jiang LI Jian Bo FANG Lin LIANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第5期863-878,共16页
Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B... Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B and Moebius form φ. We call the Blaschke tensor is isotropic if there exists a smooth function λ such that A = λg. In this paper, We classify all surfaces with isotropic Blaschke tensor in S^3. 展开更多
关键词 moebius geometry Blaschke tensor ISOTROPIC
原文传递
Hypersurfaces with Isotropic Para-Blaschke Tensor 被引量:1
3
作者 Jian Bo FANG Kun ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第7期1195-1209,共15页
Let Mn be an n-dimensional submanifold without umbilical points in the (n + 1)-dimen- sional unit sphere Sn+l. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a 1-form Ф called moe... Let Mn be an n-dimensional submanifold without umbilical points in the (n + 1)-dimen- sional unit sphere Sn+l. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a 1-form Ф called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0,2) tensor D = A + μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function ,λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper. 展开更多
关键词 moebius geometry para-Blaschke tensor ISOTROPIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部