期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Surfaces with Vanishing Moebius Form in S^n 被引量:26
1
作者 HaiZhongLI ChangPingWANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第4期671-678,共8页
An important Moebius invariant in the theory of Moebius surfaces in S^n inthe so-called Moebius form. In this paper, we give a complete classification of surfaces in S^n withvanishing Moebius form under the Moebius tr... An important Moebius invariant in the theory of Moebius surfaces in S^n inthe so-called Moebius form. In this paper, we give a complete classification of surfaces in S^n withvanishing Moebius form under the Moebius transformation group. 展开更多
关键词 conformal invariants moebius form minimal surfaces
原文传递
A Formula for Submanifolds in S^n and Its Applications in Moebius Geometry 被引量:9
2
作者 钟定兴 《Northeastern Mathematical Journal》 CSCD 2001年第3期361-370,共10页
In this paper, we obtain a formula for submanifolds in Sn+p by calculating the Laplacian of the Moebius second fundamental form. Using this formula, we obtain some pinching theorems about the minimal eigenvalue of the... In this paper, we obtain a formula for submanifolds in Sn+p by calculating the Laplacian of the Moebius second fundamental form. Using this formula, we obtain some pinching theorems about the minimal eigenvalue of the Blaschke tensor. 展开更多
关键词 moebius metric moebius second fundamental form moebius form Blaschke tensor EIGENVALUE
在线阅读 下载PDF
The Upper Bound of the Moebius Scalar Curvature of Submanifolds in S^n+p
3
作者 ZHONG Ding-xing SUN Hong-an MO Xiao-kai 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期65-73,共9页
The most important Moebius invariants in the Moebius differential geometry of submanifolds in S^n+p are the Moebius metric g, the Moebius second fundamental form B, the Moebius form φ and the Blaschke tensor A. In t... The most important Moebius invariants in the Moebius differential geometry of submanifolds in S^n+p are the Moebius metric g, the Moebius second fundamental form B, the Moebius form φ and the Blaschke tensor A. In this paper, we obtain the upper bound of the Moebius scalar curvature of submanifolds with parallel Moebius form in S^n+p. 展开更多
关键词 upper bound moebius metric moebius scalar curvature parallel moebius form
在线阅读 下载PDF
Immersed Hypersurfaces in the Unit Sphere S^(m+1) with Constant Blaschke Eigenvalues 被引量:11
4
作者 Xing Xiao LI Feng Yun ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第3期533-548,共16页
For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn... For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn with constant Blaschke eigenvalues. In this paper, we are able to classify all immersed hypersurfaces in S^m+1 with vanishing MSbius form and constant Blaschke eigenvalues, in case (1) x has exact two distinct Blaschke eigenvalues, or (2) m = 3. With these classifications, some interesting examples are also presented. 展开更多
关键词 moebius form Blaschke eigenvalues Blaschke tensor MSbius metric MSbius second fundamental form
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部