We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characte...We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characterizing conformal classes in the space-time that determine a space moduli [1] on coherent sheaves for the securing solutions in field theory [2]. In a major context, elements of derived categories like D-branes and heterotic strings are considered, and using the geometric Langlands program, a moduli space is obtained of equivalence between certain geometrical pictures (non-conformal world sheets [3]) and physical stacks (derived sheaves), that establishes equivalence between certain theories of super symmetries of field of a Penrose transform that generalizes the implications given by the Langlands program. With it we obtain extensions of a cohomology of integrals for a major class of field equations to corresponding Hecke category.展开更多
Considering the different versions of the Penrose transform on D-modules and their applications to different levels of DM-modules in coherent sheaves, we obtain a geometrical re-construction of the electrodynamical ca...Considering the different versions of the Penrose transform on D-modules and their applications to different levels of DM-modules in coherent sheaves, we obtain a geometrical re-construction of the electrodynamical carpet of the space-time, which is a direct consequence of the equivalence between the moduli spaces, that have been demonstrated in a before work. In this case, the equivalence is given by the Penrose transform on the quasi coherent Dλ-modules given by the generalized Verma modules diagram established in the Recillas conjecture to the group SO(1, n + 1), and consigned in the Dp-modules on which have been obtained solutions in field theory of electromagnetic type.展开更多
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha...Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.展开更多
Spaces of equivalence modulo a relation of congruence are constructed on field solutions to establish a theory of the universe that includes the theory QFT (Quantum Field theory), the SUSY (Super-symmetry theory) ...Spaces of equivalence modulo a relation of congruence are constructed on field solutions to establish a theory of the universe that includes the theory QFT (Quantum Field theory), the SUSY (Super-symmetry theory) and HST (heterotic string theory) using the sheaves correspondence of differential operators of the field equations and sheaves of coherent D - Modules [1]. The above mentioned correspondence use a Zuckerman functor that is a factor of the universal functor of derived sheaves of Harish-Chandra to the Langlands geometrical program in mirror symmetry [2, 3]. The obtained development includes complexes of D - modules of infinite dimension, generalizing for this way, the BRST-cohomology in this context. With it, the class of the integrable systems is extended in mathematical physics and the possibility of obtaining a general theory of integral transforms for the space - time (integral operator cohomology [4]), and with it the measurement of many of their observables [5]. Also tends a bridge to complete a classification of the differential operators for the different field equations using on the base of Verma modules that are classification spaces of SO(l, n + 1), where elements of the Lie algebra al(1, n + 1), are differential operators, of the equations in mathematical physics [1]. The cosmological problem that exists is to reduce the number of field equations that are resoluble under the same gauge field (Verma modules) and to extend the gauge solutions to other fields using the topological groups symmetries that define their interactions. This extension can be given by a global Langlands correspondence between the Hecke sheaves category on an adequate moduli stack and the holomorphic L G - bundles category with a special connection (Deligne connection). The corresponding D - modules may be viewed as sheaves of conformal blocks (or co-invariants) (images under a version of the Penrose transform [1, 6]) naturally arising in the framework of conformal field theory.展开更多
Some derived categories and their deformed versions are used to develop a theory of the ramifications of field studied in the geometrical Langlands program to obtain the correspondences between moduli stacks and solut...Some derived categories and their deformed versions are used to develop a theory of the ramifications of field studied in the geometrical Langlands program to obtain the correspondences between moduli stacks and solution classes represented cohomologically under the study of the kernels of the differential operators studied in their classification of the corresponding field equations. The corresponding D-modules in this case may be viewed as sheaves of conformal blocks (or co-invariants) (images under a version of the Penrose transform) naturally arising in the framework of conformal field theory. Inside the geometrical Langlands correspondence and in their cohomological context of strings can be established a framework of the space-time through the different versions of the Penrose transforms and their relation between them by intertwining operators (integral transforms that are isomorphisms between cohomological spaces of orbital spaces of the space-time), obtaining the functors that give equivalences of their corresponding categories.(For more information,please refer to the PDF version.)展开更多
We analyze the local structure of the moduli space of genus one stable quasimaps.Combining it with the p-fields theory developed by Chang and Li(2020),we prove the splitting formula for the virtual cycle of stable qua...We analyze the local structure of the moduli space of genus one stable quasimaps.Combining it with the p-fields theory developed by Chang and Li(2020),we prove the splitting formula for the virtual cycle of stable quasimaps to complete intersections in P~n.展开更多
文摘We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characterizing conformal classes in the space-time that determine a space moduli [1] on coherent sheaves for the securing solutions in field theory [2]. In a major context, elements of derived categories like D-branes and heterotic strings are considered, and using the geometric Langlands program, a moduli space is obtained of equivalence between certain geometrical pictures (non-conformal world sheets [3]) and physical stacks (derived sheaves), that establishes equivalence between certain theories of super symmetries of field of a Penrose transform that generalizes the implications given by the Langlands program. With it we obtain extensions of a cohomology of integrals for a major class of field equations to corresponding Hecke category.
文摘Considering the different versions of the Penrose transform on D-modules and their applications to different levels of DM-modules in coherent sheaves, we obtain a geometrical re-construction of the electrodynamical carpet of the space-time, which is a direct consequence of the equivalence between the moduli spaces, that have been demonstrated in a before work. In this case, the equivalence is given by the Penrose transform on the quasi coherent Dλ-modules given by the generalized Verma modules diagram established in the Recillas conjecture to the group SO(1, n + 1), and consigned in the Dp-modules on which have been obtained solutions in field theory of electromagnetic type.
基金supported by the National Science and Technology Major Project(No.2016ZX05047-002-001)
文摘Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
文摘Spaces of equivalence modulo a relation of congruence are constructed on field solutions to establish a theory of the universe that includes the theory QFT (Quantum Field theory), the SUSY (Super-symmetry theory) and HST (heterotic string theory) using the sheaves correspondence of differential operators of the field equations and sheaves of coherent D - Modules [1]. The above mentioned correspondence use a Zuckerman functor that is a factor of the universal functor of derived sheaves of Harish-Chandra to the Langlands geometrical program in mirror symmetry [2, 3]. The obtained development includes complexes of D - modules of infinite dimension, generalizing for this way, the BRST-cohomology in this context. With it, the class of the integrable systems is extended in mathematical physics and the possibility of obtaining a general theory of integral transforms for the space - time (integral operator cohomology [4]), and with it the measurement of many of their observables [5]. Also tends a bridge to complete a classification of the differential operators for the different field equations using on the base of Verma modules that are classification spaces of SO(l, n + 1), where elements of the Lie algebra al(1, n + 1), are differential operators, of the equations in mathematical physics [1]. The cosmological problem that exists is to reduce the number of field equations that are resoluble under the same gauge field (Verma modules) and to extend the gauge solutions to other fields using the topological groups symmetries that define their interactions. This extension can be given by a global Langlands correspondence between the Hecke sheaves category on an adequate moduli stack and the holomorphic L G - bundles category with a special connection (Deligne connection). The corresponding D - modules may be viewed as sheaves of conformal blocks (or co-invariants) (images under a version of the Penrose transform [1, 6]) naturally arising in the framework of conformal field theory.
文摘Some derived categories and their deformed versions are used to develop a theory of the ramifications of field studied in the geometrical Langlands program to obtain the correspondences between moduli stacks and solution classes represented cohomologically under the study of the kernels of the differential operators studied in their classification of the corresponding field equations. The corresponding D-modules in this case may be viewed as sheaves of conformal blocks (or co-invariants) (images under a version of the Penrose transform) naturally arising in the framework of conformal field theory. Inside the geometrical Langlands correspondence and in their cohomological context of strings can be established a framework of the space-time through the different versions of the Penrose transforms and their relation between them by intertwining operators (integral transforms that are isomorphisms between cohomological spaces of orbital spaces of the space-time), obtaining the functors that give equivalences of their corresponding categories.(For more information,please refer to the PDF version.)
基金supported by Korea Institute for Advanced Study Individual Grant at Korea Institute for Advanced Study(Grant No.MG070902)National Key Research and Development Program of China(Grant No.2020YFA0713200)+1 种基金National Natural Science Foundation of China(Grant No.12071079)supported by the Start-up Fund of Hunan University。
文摘We analyze the local structure of the moduli space of genus one stable quasimaps.Combining it with the p-fields theory developed by Chang and Li(2020),we prove the splitting formula for the virtual cycle of stable quasimaps to complete intersections in P~n.