期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A product module mining method for PLM database 被引量:2
1
作者 雷佻钰 彭卫平 +3 位作者 雷金 钟院华 张秋华 窦俊豪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1754-1766,共13页
Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in ... Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve. 展开更多
关键词 product design module division product module mining product lifecycle management (PLM) database
在线阅读 下载PDF
DIEONet:Domain-Invariant Information Extraction and Optimization Network for Visual Place Recognition
2
作者 Shaoqi Hou Zebang Qin +3 位作者 Chenyu Wu Guangqiang Yin Xinzhong Wang Zhiguo Wang 《Computers, Materials & Continua》 2025年第3期5019-5033,共15页
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that pre... Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks.To this end,this paper proposes a Domain-invariant Information Extraction and Optimization Network(DIEONet)for VPR.The core of the algorithm is a newly designed Domain-invariant Information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object class.MJT Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during training.We demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative benchmarks.In particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%. 展开更多
关键词 Visual place recognition domain-invariant information mining module multi-sample joint triplet loss
在线阅读 下载PDF
Multilevel Pattern Mining Architecture for Automatic Network Monitoring in Heterogeneous Wireless Communication Networks 被引量:8
3
作者 Zhiguo Qu John Keeney +2 位作者 Sebastian Robitzsch Faisal Zaman Xiaojun Wang 《China Communications》 SCIE CSCD 2016年第7期108-116,共9页
The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks.... The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks.This paper presents a multilevel pattern mining architecture to support automatic network management by discovering interesting patterns from telecom network monitoring data.This architecture leverages and combines existing frequent itemset discovery over data streams,association rule deduction,frequent sequential pattern mining,and frequent temporal pattern mining techniques while also making use of distributed processing platforms to achieve high-volume throughput. 展开更多
关键词 automatic network monitoring sequential pattern mining episode discovery module
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部