Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address ...Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.展开更多
In exploring hypersonic propulsion,precooler combined engines require the development of lightweight,efficient,and compact heat exchangers(HX).As additive manufacturing technology continues to progress,triply periodic...In exploring hypersonic propulsion,precooler combined engines require the development of lightweight,efficient,and compact heat exchangers(HX).As additive manufacturing technology continues to progress,triply periodic minimal surface(TPMS)structures,characterized by exceptionally high surface area to volume ratios and intricate geometric structures,have demonstrated superior heat transfer performance.This research examines the thermal-hydraulic(TH)behavior of FKS and Diamond as heat transfer structures under different Reynolds numbers through numerical simulations.The Nusselt number for FKS is 13.2%–17.6%higher than Diamond,while the friction factor for FKS is approximately 18.8%–29.3%higher.A detailed analysis of the internal flow mechanisms reveals that the flow pattern within TPMS can be summarized as cyclic convergence-separation-convergence.The fluid experiences constant disturbances from the structure in all spatial directions,generating strong turbulent mixing and large wall shear stresses,which significantly enhance heat transfer performance.展开更多
The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mis...The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mismatch in interface energy-level alignment.Here,we introduced[2-(3,6-dimethoxy-9H-carba zol-9-yl)ethyl]phosphonic acid(MeO-2PACz)to modify the PTAA layer,which effectively suppressed surface potential fluctuations and aligned energy levels at the interface of PTAA/perovskite.Additionally,MeO-2PACz enhanced the hydrophilicity of PTAA,facilitating the fabrication of dense,uniform,and pinhole-free perovskite films on large-area flexible substrates.As a result,we achieved an F-PSM with a power conversion efficiency(PCE)of 16.6% and an aperture area of 64 cm^(2),which is the highest reported value among F-PSMs with an active area exceeding 35 cm^(2)based on PTAA.Moreover,the encapsulated module demonstrated outstanding long-term operational stability,retaining 90.2% of its initial efficiency after 1000 bending cycles(5 mm radius),87.2% after 1000 h of continuous illumination,and 80.3% under combined thermal and humid conditions(85℃ and 85% relative humidity),representing one of the most stable F-PSMs reported to date.展开更多
Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differe...Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differences between single types of modification modules,neglecting the impact of steric-hindrance effect caused by chemical structure.Herein,single-tailed modification module with low-steric-hindrance effect and two-tailed modification module with high-steric-hindrance effect were selected to construct paclitaxel prodrugs(P-LA_(C18)and P-BAC18),and the in-depth insights of the sterichindrance effect on prodrug nanoassemblies were explored.Notably,the size stability of the two-tailed prodrugs was enhanced due to improved intermolecular interactions and steric hindrance.Single-tailed prodrug nanoassemblies were more susceptible to attack by redox agents,showing faster drug release and stronger antitumor efficacy,but with poorer safety.In contrast,two-tailed prodrug nanoassemblies exhibited significant advantages in terms of pharmacokinetics,tumor accumulation and safety due to the good size stability,thus ensuring equivalent antitumor efficacy at tolerance dose.These findings highlighted the critical role of steric-hindrance effect of the modification module in regulating the structureactivity relationship of prodrug nanoassemblies and proposed new perspectives into the precise design of self-assembled prodrugs for high-performance cancer therapeutics.展开更多
Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yet...Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yetter-Drinfeld simple modules over D(n)and give iso-classes of them.展开更多
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2024JC-YBMS-449)Project ZR2022QE233 supported by Shandong Provincial Natural Science Foundation.
文摘In exploring hypersonic propulsion,precooler combined engines require the development of lightweight,efficient,and compact heat exchangers(HX).As additive manufacturing technology continues to progress,triply periodic minimal surface(TPMS)structures,characterized by exceptionally high surface area to volume ratios and intricate geometric structures,have demonstrated superior heat transfer performance.This research examines the thermal-hydraulic(TH)behavior of FKS and Diamond as heat transfer structures under different Reynolds numbers through numerical simulations.The Nusselt number for FKS is 13.2%–17.6%higher than Diamond,while the friction factor for FKS is approximately 18.8%–29.3%higher.A detailed analysis of the internal flow mechanisms reveals that the flow pattern within TPMS can be summarized as cyclic convergence-separation-convergence.The fluid experiences constant disturbances from the structure in all spatial directions,generating strong turbulent mixing and large wall shear stresses,which significantly enhance heat transfer performance.
基金financially supported by the Key Fund of Tianjin Natural Science Foundation,China Project of Tianjin Natural Science Foundation(24JCZDJC00510)the National Natural Science Foundation of China,China(22475147)the Fundamental Research Funds for the Central Universities,China。
文摘The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mismatch in interface energy-level alignment.Here,we introduced[2-(3,6-dimethoxy-9H-carba zol-9-yl)ethyl]phosphonic acid(MeO-2PACz)to modify the PTAA layer,which effectively suppressed surface potential fluctuations and aligned energy levels at the interface of PTAA/perovskite.Additionally,MeO-2PACz enhanced the hydrophilicity of PTAA,facilitating the fabrication of dense,uniform,and pinhole-free perovskite films on large-area flexible substrates.As a result,we achieved an F-PSM with a power conversion efficiency(PCE)of 16.6% and an aperture area of 64 cm^(2),which is the highest reported value among F-PSMs with an active area exceeding 35 cm^(2)based on PTAA.Moreover,the encapsulated module demonstrated outstanding long-term operational stability,retaining 90.2% of its initial efficiency after 1000 bending cycles(5 mm radius),87.2% after 1000 h of continuous illumination,and 80.3% under combined thermal and humid conditions(85℃ and 85% relative humidity),representing one of the most stable F-PSMs reported to date.
基金supported by the National Natural Science Foundation of China,(Nos.82272151,82204318)Liaoning Revitalization Talents Program(No.XLYC2203083)+2 种基金Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(No.RC220389)Postdoctoral Fellowship Program of CPSF(No.GZC20231732)China Postdoctoral Science Foundation(Nos.2023TQ0222,2023MD744229).
文摘Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differences between single types of modification modules,neglecting the impact of steric-hindrance effect caused by chemical structure.Herein,single-tailed modification module with low-steric-hindrance effect and two-tailed modification module with high-steric-hindrance effect were selected to construct paclitaxel prodrugs(P-LA_(C18)and P-BAC18),and the in-depth insights of the sterichindrance effect on prodrug nanoassemblies were explored.Notably,the size stability of the two-tailed prodrugs was enhanced due to improved intermolecular interactions and steric hindrance.Single-tailed prodrug nanoassemblies were more susceptible to attack by redox agents,showing faster drug release and stronger antitumor efficacy,but with poorer safety.In contrast,two-tailed prodrug nanoassemblies exhibited significant advantages in terms of pharmacokinetics,tumor accumulation and safety due to the good size stability,thus ensuring equivalent antitumor efficacy at tolerance dose.These findings highlighted the critical role of steric-hindrance effect of the modification module in regulating the structureactivity relationship of prodrug nanoassemblies and proposed new perspectives into the precise design of self-assembled prodrugs for high-performance cancer therapeutics.
基金Supported by the Fundamental Research Program of Shanxi Province(Grant No.202303021212147)the National Natural Science Foundation of China(Grant No.12471038)。
文摘Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yetter-Drinfeld simple modules over D(n)and give iso-classes of them.