AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anteri...AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.展开更多
The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the fo...The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.展开更多
When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic...When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.展开更多
The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In t...The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In the traditional slanted-edge method,a sub-block is always manually extracted from original image and its MTF will be viewed as the result of the whole image. However,handcraft extraction is inefficient and will lead to inaccurate results. Given this,an automatic MTF computation algorithm is proposed,which extracts and screens out all the effective sub-blocks and calculates their average MTF as the final result. Then,a two-dimensional MTF restoration model is constructed by multiplying the horizontal and vertical MTF,and it is combined with conventional image restoration methods to restore fuzzy image. Experimental results indicate the proposed method implementes a fast and accurate MTF computation and the MTF model improves the performance of conventional restoration methods significantly.展开更多
AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted t...AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted to measure MTF of 96 amblyopes (96 eyes) whose visual acuity was corrected to 5.0 and 80 normal controls (80 eyes) at the same age under six interference fringes (IVA=0.06, 0.1, 0.2, 0.4, 0.6, 0.8). RESULTS: The functional values of amblyopes were significantly lower than those of normal subjects in every fringe (P<0.01), especially in medium and high frequency. CONCLUSION: For amblyopes, MTF was still abnormal after stopping the treatments.展开更多
The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
调制传递函数是红外遥感卫星像质评价的核心参数,但其在轨检测面临靶标温差稳定性不足与数据处理复杂两大挑战。提出一种基于三线靶标与温阶靶标协同的在轨调制传递函数(modulation transfer function,MTF)直接检测方法,通过靶标设计与...调制传递函数是红外遥感卫星像质评价的核心参数,但其在轨检测面临靶标温差稳定性不足与数据处理复杂两大挑战。提出一种基于三线靶标与温阶靶标协同的在轨调制传递函数(modulation transfer function,MTF)直接检测方法,通过靶标设计与模糊PID(proportional-integralderivative)温控算法,实现靶标温度均匀性(<0.5℃)、稳定性(±0.6℃)与重复性(>99%)的良好表现。基于傅里叶光学理论与辐射传输模型,结合“物方-像方调制度分离”计算原理,从遥感影像中直接提取奈奎斯特频率处MTF值,避免了传统方法中大气因素、数值微分以及参数拟合误差等对MTF检测的影响,为高分辨率红外卫星定量化应用提供了高精度技术支撑。展开更多
X波段导航雷达扫描海平面获取的图像谱与浮标获取的真实海浪谱之间存在差异,需用调制传递函数(Modulation Transfer Function,MTF)进行修正。论文利用平潭近岸采集的浮标和HH极化的X波段导航雷达实测数据,通过最小二乘法拟合调制传递函...X波段导航雷达扫描海平面获取的图像谱与浮标获取的真实海浪谱之间存在差异,需用调制传递函数(Modulation Transfer Function,MTF)进行修正。论文利用平潭近岸采集的浮标和HH极化的X波段导航雷达实测数据,通过最小二乘法拟合调制传递函数系数,推导出一种二次多项式MTF。分别使用二次多项式MTF和经典线性MTF对雷达数据处理,并比较反演得到的海浪参数与真实值之间的均方根误差,结果验证了新型二次MTF的有效性。展开更多
由于遥感图像成像过程中受传感器性能下降、大气扰动等因素影响,致使图像质量退化。为了改善遥感图像质量,从图像质量退化原理分析,提出了一种基于调制传递函数(modu lation transfer function,MTF)理论的图像复原方法。该方法主要包括...由于遥感图像成像过程中受传感器性能下降、大气扰动等因素影响,致使图像质量退化。为了改善遥感图像质量,从图像质量退化原理分析,提出了一种基于调制传递函数(modu lation transfer function,MTF)理论的图像复原方法。该方法主要包括去噪和MTF拉伸两部分。针对遥感图像的特点,给出了一种有效的基于频域的去噪方法。为了能够调节频谱拉伸的程度,还给出了一种指数调节MTF曲线的方法。中巴(中国和巴西)卫星红外遥感图像的实验结果表明:该新方法有效地提高了图像的对比度(对于实验图像来说,较复原前图像对比度提高了7倍多,方差也由原来的8.77提高到17.37)、熵等图像要素,从而改善了图像的质量。展开更多
中低分辨率在轨运行卫星遥感器的调制传递函数(Modulation Transfer Function,MTF)的监测一直是研究的难题。现提出的方法解决了中低分辨率在轨运行卫星遥感器MTF监测的关键技术。考虑到卫星遥感器的最终产物是遥感图像,从图像信息...中低分辨率在轨运行卫星遥感器的调制传递函数(Modulation Transfer Function,MTF)的监测一直是研究的难题。现提出的方法解决了中低分辨率在轨运行卫星遥感器MTF监测的关键技术。考虑到卫星遥感器的最终产物是遥感图像,从图像信息理解的三要素出发,即灰度、纹理和边缘,分析图像三要素与遥感器MTF的关系。在分析过程中,应用主成分分析方法,不仅对多组原始数据进行了简化,而且对图像参数进行了降维。通过与其它方法的比较,进一步验证了使用主成分分析方法降维的有效性;同时实验结果亦表明了主成分分析方法的可靠性。最后建立了图像单个综合参数与MTF的关系模型,拟合结果说明,此模型能较好地表达图像参数与MTF之间的关系,这将为在轨运行条件下的建模提供十分重要的技术支持。展开更多
调制传输函数MTF(Modulation Transfer Function)是评价光学传感器性能的一个重要的指标。本文对MTF在轨评估技术中的刃边法算法进行深入研究,通过分析对比当前主流算法在刃边法关键环节上的处理方法,对算法进行了优化,然后利用仿真方...调制传输函数MTF(Modulation Transfer Function)是评价光学传感器性能的一个重要的指标。本文对MTF在轨评估技术中的刃边法算法进行深入研究,通过分析对比当前主流算法在刃边法关键环节上的处理方法,对算法进行了优化,然后利用仿真方法对优化算法进行了精度分析,并与国际标准组织提供的MTF评估算法(ISO 12233)进行了比较。精度分析结果表明:在相同仿真条件下,该算法的计算精度优于ISO12233评估算法,适用于高分辨率光学载荷的MTF在轨评估。展开更多
文摘AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions,China (Grant No. CX09B 096Z)
文摘The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.41076119,41176160,41476158)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Youth Foundation of Jiangsu Province(No.BK2012467)the Natural Science State Key Foundation of Jiangsu Province(No.BK2011008)the National Natural Science Youth Foundation of China(No.41206171)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.S8113078001)
文摘When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA12A305)the National Key Technology R&D Program of the Ministry of Science and Technology(No.2013BAH03B01)+1 种基金Fundamental Research Funds for the Central Universities of China(No.2042015kf0059)China Postdoctoral Science Foundation(No.2015M582277)
文摘The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In the traditional slanted-edge method,a sub-block is always manually extracted from original image and its MTF will be viewed as the result of the whole image. However,handcraft extraction is inefficient and will lead to inaccurate results. Given this,an automatic MTF computation algorithm is proposed,which extracts and screens out all the effective sub-blocks and calculates their average MTF as the final result. Then,a two-dimensional MTF restoration model is constructed by multiplying the horizontal and vertical MTF,and it is combined with conventional image restoration methods to restore fuzzy image. Experimental results indicate the proposed method implementes a fast and accurate MTF computation and the MTF model improves the performance of conventional restoration methods significantly.
基金Supported by Wenzhou Science and Technology Commission in 2009, China (No.Y20090384)
文摘AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted to measure MTF of 96 amblyopes (96 eyes) whose visual acuity was corrected to 5.0 and 80 normal controls (80 eyes) at the same age under six interference fringes (IVA=0.06, 0.1, 0.2, 0.4, 0.6, 0.8). RESULTS: The functional values of amblyopes were significantly lower than those of normal subjects in every fringe (P<0.01), especially in medium and high frequency. CONCLUSION: For amblyopes, MTF was still abnormal after stopping the treatments.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.
文摘调制传递函数是红外遥感卫星像质评价的核心参数,但其在轨检测面临靶标温差稳定性不足与数据处理复杂两大挑战。提出一种基于三线靶标与温阶靶标协同的在轨调制传递函数(modulation transfer function,MTF)直接检测方法,通过靶标设计与模糊PID(proportional-integralderivative)温控算法,实现靶标温度均匀性(<0.5℃)、稳定性(±0.6℃)与重复性(>99%)的良好表现。基于傅里叶光学理论与辐射传输模型,结合“物方-像方调制度分离”计算原理,从遥感影像中直接提取奈奎斯特频率处MTF值,避免了传统方法中大气因素、数值微分以及参数拟合误差等对MTF检测的影响,为高分辨率红外卫星定量化应用提供了高精度技术支撑。
文摘X波段导航雷达扫描海平面获取的图像谱与浮标获取的真实海浪谱之间存在差异,需用调制传递函数(Modulation Transfer Function,MTF)进行修正。论文利用平潭近岸采集的浮标和HH极化的X波段导航雷达实测数据,通过最小二乘法拟合调制传递函数系数,推导出一种二次多项式MTF。分别使用二次多项式MTF和经典线性MTF对雷达数据处理,并比较反演得到的海浪参数与真实值之间的均方根误差,结果验证了新型二次MTF的有效性。
文摘由于遥感图像成像过程中受传感器性能下降、大气扰动等因素影响,致使图像质量退化。为了改善遥感图像质量,从图像质量退化原理分析,提出了一种基于调制传递函数(modu lation transfer function,MTF)理论的图像复原方法。该方法主要包括去噪和MTF拉伸两部分。针对遥感图像的特点,给出了一种有效的基于频域的去噪方法。为了能够调节频谱拉伸的程度,还给出了一种指数调节MTF曲线的方法。中巴(中国和巴西)卫星红外遥感图像的实验结果表明:该新方法有效地提高了图像的对比度(对于实验图像来说,较复原前图像对比度提高了7倍多,方差也由原来的8.77提高到17.37)、熵等图像要素,从而改善了图像的质量。
文摘中低分辨率在轨运行卫星遥感器的调制传递函数(Modulation Transfer Function,MTF)的监测一直是研究的难题。现提出的方法解决了中低分辨率在轨运行卫星遥感器MTF监测的关键技术。考虑到卫星遥感器的最终产物是遥感图像,从图像信息理解的三要素出发,即灰度、纹理和边缘,分析图像三要素与遥感器MTF的关系。在分析过程中,应用主成分分析方法,不仅对多组原始数据进行了简化,而且对图像参数进行了降维。通过与其它方法的比较,进一步验证了使用主成分分析方法降维的有效性;同时实验结果亦表明了主成分分析方法的可靠性。最后建立了图像单个综合参数与MTF的关系模型,拟合结果说明,此模型能较好地表达图像参数与MTF之间的关系,这将为在轨运行条件下的建模提供十分重要的技术支持。
文摘讨论了数字化X射线成像系统调制传递函数(MTF)的刀口测量法.首先通过数值模拟方法研究了采样率和噪声对准确测量MTF的影响,真实测量中采用多条过采样刀口响应函数(ERF)取平均以压制噪声获取光滑的ERF曲线;然后用指数函数对所获ERF进行分段拟合以确保刀口边缘强度值变化的单调性,将由其获得的MTF值与线对卡结果进行比较,证明了该方法用于成像系统MTF测量的有效性.同时,通过实验分析介绍了刀口法材料、材料厚度、光源曝光电压及曝光时间的选择,最终在本系统测量中选择的刀口材料为1 mm厚铅板,曝光管电压为33 kV,曝光时间为10 s.
文摘调制传输函数MTF(Modulation Transfer Function)是评价光学传感器性能的一个重要的指标。本文对MTF在轨评估技术中的刃边法算法进行深入研究,通过分析对比当前主流算法在刃边法关键环节上的处理方法,对算法进行了优化,然后利用仿真方法对优化算法进行了精度分析,并与国际标准组织提供的MTF评估算法(ISO 12233)进行了比较。精度分析结果表明:在相同仿真条件下,该算法的计算精度优于ISO12233评估算法,适用于高分辨率光学载荷的MTF在轨评估。