This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency ...This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,...Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.展开更多
Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of t...Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.展开更多
Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-c...Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-channels (subcarriers) are transmitted in parallel and divide the available transmission bandwidth. This techniqueis originally based on the Fast Fourier Transform of the information data. In order to improve the performance of the OFDM and overcome some limitations, an alternative OFDM approach based on the Wavelet Transform is proposed. In this paper, we study the performance of such systems in additive white Gaussian channel (AWGN). MATLAB simulations are realized and performance comparisons are presented.展开更多
针对真实环境下采集的病害图像中存在的大量噪声和复杂背景干扰,导致作物病害识别准确性和泛化性低的问题,该研究提出基于自适应BayesShrink和频-空特征融合的作物病害识别方法(adaptive BayesShrink and frequencyspatial domain featu...针对真实环境下采集的病害图像中存在的大量噪声和复杂背景干扰,导致作物病害识别准确性和泛化性低的问题,该研究提出基于自适应BayesShrink和频-空特征融合的作物病害识别方法(adaptive BayesShrink and frequencyspatial domain features fusion, AFSF-DCT)。首先,设计了自适应BayesShrink算法(Ad-BayesShrink)以减少噪声干扰,同时保留更多细节,降低识别模型提取病害特征的难度。然后提出基于频-空特征融合和动态交叉自注意机制的作物病害识别模型(crop leaf disease identification model based on frequency-spatial features fusion and dynamic cross-self-attention,FSF-DCT)。为实现全面的频-空特征映射,设计了基于离散小波变换(discrete wavelet transform,DWT)和倒残差结构(bneck)的频-空特征映射(DWT-Bneck)分支以捕获多尺度病害特征。频域分支设计了基于2D DWT的特征映射模块(2D DWT-based frequency-features decomposition module, DWFD)以捕获病害细节和纹理,用于补充空间域特征在全局信息表达上的不足。空间域分支在bneck中引入CBAM(convolutional block attention module)和Dynamic Shift Max激活函数以实现全面的空间特征映射。最后设计了动态交叉自注意特征融合模块(multi-scale features fusion network based on dynamic cross-self-attention, MDCS-DF)融合频-空特征并增强模型对病害特征的关注。结果表明,Ad-BayesShrink获得了35.78的最高峰值信噪比,优于VisuShrink和SUREShrink。FSF-DCT在自建数据集和2个开源数据集(PlantVillage和AI challenger 2018)上分别获得了99.20%、99.90%和90.75%的识别精度,且具有较小的参数量(7.48 M)和浮点运算数(4.62 G),优于当前大部分的主流识别模型。AFSF-DCT可为复杂背景下的作物叶片病害的快速精准检测提供模型参考。展开更多
为了解决奇异值分解(singular value decomposition,SVD)算法提取水印时需要原始载体图像的缺陷,以及量化索引调制(quantization index modulation,QIM)均匀量化不适用于非均匀信号的问题,通过引入μ律压缩技术,提出一种新的基于DWT-SV...为了解决奇异值分解(singular value decomposition,SVD)算法提取水印时需要原始载体图像的缺陷,以及量化索引调制(quantization index modulation,QIM)均匀量化不适用于非均匀信号的问题,通过引入μ律压缩技术,提出一种新的基于DWT-SVD压缩量化的数字图像盲水印算法。该算法对载体图像进行分块,对每一分块实施离散小波变换(discrete wavelet transform,DWT),以及对变换后的近似部分系数进行SVD分解,使用μ律压缩函数压缩分解后的最大奇异值,用QIM的方法嵌入二值水印。算法只用到了最大奇异值,可以盲提取水印,消除因传输原始载体图像产生的不安全性,μ律压缩技术也减小了嵌入水印对原始载体图像的扰乱。仿真实验结果表明,该算法保持了较高的透明性,并对高斯噪声、中值滤波、联合图像专家小组(joint photographic experts group,JPEG)压缩、缩放等常见攻击具有更强的鲁棒性。展开更多
文摘This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
基金Supported by the National Natural Science Foundation of China under Grant 42274144 and under Grant 41974137.
文摘Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.
文摘Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.
文摘Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-channels (subcarriers) are transmitted in parallel and divide the available transmission bandwidth. This techniqueis originally based on the Fast Fourier Transform of the information data. In order to improve the performance of the OFDM and overcome some limitations, an alternative OFDM approach based on the Wavelet Transform is proposed. In this paper, we study the performance of such systems in additive white Gaussian channel (AWGN). MATLAB simulations are realized and performance comparisons are presented.
文摘针对真实环境下采集的病害图像中存在的大量噪声和复杂背景干扰,导致作物病害识别准确性和泛化性低的问题,该研究提出基于自适应BayesShrink和频-空特征融合的作物病害识别方法(adaptive BayesShrink and frequencyspatial domain features fusion, AFSF-DCT)。首先,设计了自适应BayesShrink算法(Ad-BayesShrink)以减少噪声干扰,同时保留更多细节,降低识别模型提取病害特征的难度。然后提出基于频-空特征融合和动态交叉自注意机制的作物病害识别模型(crop leaf disease identification model based on frequency-spatial features fusion and dynamic cross-self-attention,FSF-DCT)。为实现全面的频-空特征映射,设计了基于离散小波变换(discrete wavelet transform,DWT)和倒残差结构(bneck)的频-空特征映射(DWT-Bneck)分支以捕获多尺度病害特征。频域分支设计了基于2D DWT的特征映射模块(2D DWT-based frequency-features decomposition module, DWFD)以捕获病害细节和纹理,用于补充空间域特征在全局信息表达上的不足。空间域分支在bneck中引入CBAM(convolutional block attention module)和Dynamic Shift Max激活函数以实现全面的空间特征映射。最后设计了动态交叉自注意特征融合模块(multi-scale features fusion network based on dynamic cross-self-attention, MDCS-DF)融合频-空特征并增强模型对病害特征的关注。结果表明,Ad-BayesShrink获得了35.78的最高峰值信噪比,优于VisuShrink和SUREShrink。FSF-DCT在自建数据集和2个开源数据集(PlantVillage和AI challenger 2018)上分别获得了99.20%、99.90%和90.75%的识别精度,且具有较小的参数量(7.48 M)和浮点运算数(4.62 G),优于当前大部分的主流识别模型。AFSF-DCT可为复杂背景下的作物叶片病害的快速精准检测提供模型参考。
文摘为了解决奇异值分解(singular value decomposition,SVD)算法提取水印时需要原始载体图像的缺陷,以及量化索引调制(quantization index modulation,QIM)均匀量化不适用于非均匀信号的问题,通过引入μ律压缩技术,提出一种新的基于DWT-SVD压缩量化的数字图像盲水印算法。该算法对载体图像进行分块,对每一分块实施离散小波变换(discrete wavelet transform,DWT),以及对变换后的近似部分系数进行SVD分解,使用μ律压缩函数压缩分解后的最大奇异值,用QIM的方法嵌入二值水印。算法只用到了最大奇异值,可以盲提取水印,消除因传输原始载体图像产生的不安全性,μ律压缩技术也减小了嵌入水印对原始载体图像的扰乱。仿真实验结果表明,该算法保持了较高的透明性,并对高斯噪声、中值滤波、联合图像专家小组(joint photographic experts group,JPEG)压缩、缩放等常见攻击具有更强的鲁棒性。