Modulated electro-hyperthermia (mEHT) targets tissue’s natural electric and thermal heterogeneities to heat the cancer cells selectively. The applied 13.56 MHz radiofrequency (RF) is a carrier of the low-frequency mo...Modulated electro-hyperthermia (mEHT) targets tissue’s natural electric and thermal heterogeneities to heat the cancer cells selectively. The applied 13.56 MHz radiofrequency (RF) is a carrier of the low-frequency modulation. The high-frequency part was chosen to select the malignant lesion using the specialties of the tumor: the higher conductivity and dielectric constant of the tumor than its host. The electric field selects the tumor, and the low-frequency amplitude modulation polarizes and excites the transmembrane proteins of the malignant cells. The dominant absorption of the energy by the microscopic clusters of the membrane rafts acts like nanoparticle heating. Exciting the membrane produces various apoptotic signals. The processes were modeled using silico and phantom experiments, which proved the concept. The preclinical verification was made in vitro and in vivo, and in the end, clinical proofs validated the method. Our objective is to follow all the development steps from the laboratory to the clinics in a trilogy of articles. This present is the first part, which deals with in silico, phantom, and in vitro research.展开更多
BACKGROUND An increasing number of studies report the beneficial effects of regional hyperthermia in association with chemotherapy(CHT)and radiotherapy for the treatment of pancreatic cancer;in particular,the use of m...BACKGROUND An increasing number of studies report the beneficial effects of regional hyperthermia in association with chemotherapy(CHT)and radiotherapy for the treatment of pancreatic cancer;in particular,the use of modulated electrohyperthermia(mEHT)results in increased survival and tumor response.AIM To compare outcomes of CHT alone or in association with mEHT for the treatment of stage III and IV pancreatic cancer.METHODS This was an observational retrospective study;data were collected for patients with stage III-IV pancreatic cancer that were treated with CHT alone or in combination with mEHT from 2003 to 2019.A total of 158 patients were included in the study out 270 patients screened in four Italian hospitals;58(37%)of these received CHT+mEHT and 100(63%)CHT.CHT was mainly gemcitabine-based regimens in both groups.RESULTS Overall(19.5 mo vs 11.02 mo,P<0.001)and progression-free(12 mo vs 3 mo,P<0.001)survival were better for the CHT+mEHT group compared to the CHT group.The association of mEHT resulted also in an improvement of tumor response with disease control rate 95%vs 58%(P<0.001)at 3 mo.Toxicity was comparable in the two study groups,and mEHT related adverse events were limited in 8 patients presenting G1-2 skin burns.CONCLUSION The addition of mEHT to systemic CHT improved overall and progression-free survival and local tumor control with comparable toxicity.展开更多
Background: Hyperthermia (HT) in oncology was originally applied as a stand-alone treatment (monotherapy), but achieving temperatures required to cause cellular destruction (>43ºC) proved to be challenging...Background: Hyperthermia (HT) in oncology was originally applied as a stand-alone treatment (monotherapy), but achieving temperatures required to cause cellular destruction (>43ºC) proved to be challenging. Lower temperatures may increase the risk of dissemination of the treated tumours. Hyperthermia in the current context of oncology therefore aims to achieve moderate temperatures of 39ºC - 41.5ºC and is applied in combination with chemotherapy (ChT) and/or radiotherapy (RT). Modulated electro-hyperthermia (mEHT) applies amplitude modulation to an electric field generated by a capacitive coupled set-up, to selectively heat tumours. As mEHT does not appear to increase the risk of disease dissemination, it has been investigated as a stand-alone treatment for patients with advanced disease and who have exhausted all other treatment options. This report is a descriptive review of papers in oncology which report on the use of mEHT as a stand-alone treatment in a palliative setting. We aim to establish whether there is motivation for the development of trials to further investigate mEHT as a monotherapy in a palliative setting. Methods: A literature search was conducted using the key words “Oncothermia”, “modulated electro-hyperthermia” and “monotherapy”, and case reports were excluded. Only studies which applied mEHT without ChT or RT;for palliative intent;when conventional therapies have failed;or when no further options are available, were included. Results: Six phase I/II studies on tumours of the liver, brain, pancreas, and stomach were included. The studies demonstrated the safety of mEHT;disease stabilisation;and improved quality of life. Conclusion: mEHT may have a role in the palliative management of certain tumours in the absence of any other treatment options. The development of robustly designed studies on mEHT for palliative management of oncology patients is motivated.展开更多
Aim: Heating by nanoparticles, which are located in the tissue to be treated, is a well-recognized method in hyperthermic oncology. Our objective is to investigate selective, nanoscopic heating without concentrating e...Aim: Heating by nanoparticles, which are located in the tissue to be treated, is a well-recognized method in hyperthermic oncology. Our objective is to investigate selective, nanoscopic heating without concentrating extra artificial nanoparticles. We have in silico calculation to study the heating of the transmembrane protein clusters (rafts) on cell-membrane. The transmembrane protein domains have significantly higher dielectric constant than their lipid neighborhood in the membrane. This difference causes a local gradient in the Specific Absorption Rate (SAR), which could be a factor of heating of the membranes locally, as well as exciting the receptors for various signal transduction in the cells. We suppose that this process determines the observed cellular effects of modulated electro-hyperthermia (mEHT, trade-name: oncothermia). Materials and Methods: In silico models with highly specialized software (Computer Simulation Technology (CST), Darmstadt, Germany) were performed visualizing the selectivity for the membrane domains. Local raft models were created to simulate the electromagnetic (EM) effect of a 13.56 MHz excitation between two perfect electrical conductor plates, simulating the equipotential conditions of the sides of the membrane in the vicinity of the raft. The simulations were performed with near-field (EQS) solver of CST. The electric field, current density, and electric loss density were monitored by the simulations. The applied material properties and parameters refer to the recent literature. Results: In silico models show ten times higher energy-absorption of the transmembrane domains than that of its lipid-membrane surrounding, and intra- and extracellular neighborhood. Depending on the size, orientation, and location of the membrane rafts, the value of SAR varies, but we use only two simplified models to see the absorption properties. Taking into account the characteristics of the EM field effects we showed that the selective energy-absorption increased further by the cell-cell interactions. The model-calculation could confirm the opportunity of the local membrane heating. Conclusion: Our results indicate the heating in nanoscopic range with energy-absorption by the transmembrane proteins. The heated protein-clusters (membrane rafts) are used the same way as the artificial nanoparticles, while these absorbers are natural parts of the biological system.展开更多
One of the most frequently applied bioelectromagnetic effects is the deep heating of the living species with EMF energy. Despite its long history, hyperthermia is a rarely applied oncotherapy. The reason is its contro...One of the most frequently applied bioelectromagnetic effects is the deep heating of the living species with EMF energy. Despite its long history, hyperthermia is a rarely applied oncotherapy. The reason is its controversial results and complicated control. One of the solutions is concentrating the electromagnetic energy nanoscopically on the parts of the malignant cells instead of heating up the complete tumor-mass. This approach is a kind of non-uniform energy absorption, providing energy liberation only in the selected regions. The energy-absorption of the malignant cells targets the membranes and creates a situation far from thermal equilibrium. The selection of the malignant cells is based on their decided differences from their healthy counterparts. The distinguishing parameters are the electromagnetic properties of the components of the malignant tissue which are the physiologic differences between the malignant cells and their healthy counterparts. The targets realize nano-range heating, using natural nanoclusters on the cell-membrane without artificially implementing them. This energy absorption generates consequent reactions, like programmed cell-death (apoptosis) continued by immunogenic cell-death involving extended immune reactions.? The applied radiofrequency current is amplitude modulated by time-fractal modulation pattern. The accurately matched impedance realizes the self-selective mechanisms which are promoted by stochastic resonances. This complex method is a new kind of hyperthermia, named mEHT. Our objective is to analyze the problems of the selective, non-equilibrium energy absorption, and present a solution by the electromagnetic mechanisms for an effective and controllable hyperthermia in oncology.展开更多
Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transce...Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.展开更多
Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculation...Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculations to predicted a new 2D conventional superconductor,Tc_(2)B_(2),demonstrating its stable structural configuration.Remarkably,under biaxial strain,the superconducting transition temperature(T_(c))of Tc_(2)B_(2)demonstrates a significant enhancement,achieving 19.5 K under 3%compressive strain and 9.2 K under 11%tensile strain.Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect,which amplifies electron–phonon coupling interactions and consequently elevates Tc.Additionally,the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain.These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.展开更多
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons ...This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons and positrons as well as stationary positive ions.The reductive perturbation approach reduces the fluid governing equations to the plasma model to a Davey–Stewartson system.This study provides a detailed analysis of the influence of many related plasma parameters,including the density ratio of hot and cold positrons,the external magnetic field strength,the nonthermal parameter and the density ratio of electrons and cold positrons,on the growing rate of instability.Using the Hirota Bilinear method,it is found that the system supports some exact solutions,such as one-and two-dromion solutions.The change of plasma parameters significantly enhances the characteristics of dromion solutions.The elastic and inelastic collisions between two dromions are discussed at different times.The relevance of this study can help us to understand the various types of collision between energetic particles in confined plasma during the production of energy by thermonuclear fusion.展开更多
Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,...Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.展开更多
Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence ...Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence of the martensitic transformation temperature span on Co content was observed.Before training,quite a narrow temperature span of the martensitic transformation,nearly independent of the Co content,was observed in all single crystals.After training the temperature span was still narrow for 8≤x≤10.9 but was obviously expanded for 10.9<x≤12.High-resolution transmission electron microscopy revealed that at the atomic scale,there exists incommensurate modulated structure in the single phase single crystals,as evidenced by nonperiodic satellite spots in the selected area electronic diffraction patterns.Moreover,the modulated wave vector of the satellite spots was increased by higher Co contents.Combining first principal calculations it was considered that the incommensurate modulated structure originates from the formation of Co-Co pairs.After training arrays of ordered dislocations with the same Burgers vector were introduced for 8≤x≤10.9 but the network of dislocations was formed for 10.9<x≤12.Based on analysis of transmission electron microscopy,geometric phase,thermodynamics,and Landau theory,it was considered that the austenite/martensite phase interface was pinned by the network of dislocations,expanding the temperature span of the martensitic transformation.This work supplies new insights for understanding the microstructure and martensitic transformation of Ni-Mn-Ga-based alloys.展开更多
Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because th...Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.展开更多
In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave ...In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave plasma jet was formed and the microwave-assisted ammonia synthesis can be realized.Impacts of various parameters including the gas flow rate,gas component,microwave absorbed power,pulse modulation frequency,and pulse duty cycle on ammonia synthesis were systematically investigated.To indicate the reaction path of ammonia synthesis,the distributions of both the gas temperature and active species were also studied using optical emission spectra technology.It is found that a considerable amount of ammonia was directly synthesized without involvement of any catalysts,the highest ammonia production rate and energy efficiency(EE),up to 2.93μmol·min^(-1) and 6.64×10^(-2)g·(k W·h)^(-1),respectively,were achieved under low microwave power of 84.42 W.The duty cycle has obvious influences on the synthesis efficiency,compared to a duty cycle of 80%,the ammonia synthesis rate,EE and nitrogen conversion decreased by about 22%at a duty cycle of 100%.This finding underscores the significance of incorporating pulse modulation in the microwave discharge process for ammonia synthesis.Furthermore,it was found that vibrational excitation of microwave plasma has a significant driving effect on ammonia synthesis.展开更多
Background: Early research describing the concept of intensity-modulated conformal radiotherapy (IMRT) was based on 7 to 9 beams to reach an adequate level of modulation. Nevertheless, its implementation demands signi...Background: Early research describing the concept of intensity-modulated conformal radiotherapy (IMRT) was based on 7 to 9 beams to reach an adequate level of modulation. Nevertheless, its implementation demands significant resources. Our objective was to compare the compliance and homogeneity of target dose distribution between simplified IMRT and 3D-CRT in patients with cervical cancer and to assess the clinical value of simplified IMRT. Materials and Methods: From 2016 to 2017, 17 patients with stage IIB - IIIC cervical cancer were treated with external beam radiotherapy using simplified IMRT (12 cases) or 3DCRT (05 cases) and brachytherapy. Prior to radiotherapy, CT scans were conducted to delineate the target volume. The clinical target volume (CTV) included the uterus, primary tumor, supravaginal portion of the cervix, paracervical tissue, common iliac, internal and external iliac lymph nodes, obturator, and pre sacral lymph nodes, and the surrounding tissues. If the lower vagina was involved, the target volume included the whole vagina. The planning target volume (PTV) included the CTV with 1 cm anteriorly and 0.5 cm in all other directions. The PTV received 95% of 45 Gy (1.8 Gy/25 fraction). Dose-volume histogram, conformity index, homogeneity index, and treatment time per fraction were compared. Results: The 3D-CRT plan was more homogeneous than the simplified IMRT plan, while the simplified IMRT plan was more conformal. The volume of small bowels that received high-dose radiation significantly increased with simplified IMRT compared to 3D-CRT. Treatment time per fraction was 6 and 13 minutes for 3D-CRT and simplified IMRT, respectively. Conclusion: The simplified IMRT treatment plan is technically and dosimetrically acceptable and an alternative to the classic 3D-CRT plan for cervical cancer. It provides better dose distribution than 3D-CRT. However, the 3D-CRT treatment plan significantly reduced the overall treatment time per fraction.展开更多
In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retro...In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.展开更多
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle ...Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effe...Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effects, similar to the thermal action of conventional hyperthermia combined with ionizing radiation (radiotherapy). The electric field and the radiofrequency current produced both the thermal and nonthermal processes. The thermal effects produce the elevated temperature as a thermal background to optimize the nonthermal impacts. The low frequency amplitude modulation ensures accurate targeting and promotes immunogenic cell death to develop the tumor specific memory T cells disrupting the malignant cells by immune surveillance. This process (abscopal effect) works like a vaccination. The low frequency amplitude modulation is combined in the new method with the high power pulses for short time, increasing the tumor distortion ability of the electric field. The new modulation combination has much deeper penetration triplicating the active thickness of the effective treatment. The short pulse absorption increases the safety and decreases the thermal toxicity of the treatment, making the treatment safer. The increased power allows for reduced treatment time with the prescribed dose.展开更多
Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the susta...Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).展开更多
文摘Modulated electro-hyperthermia (mEHT) targets tissue’s natural electric and thermal heterogeneities to heat the cancer cells selectively. The applied 13.56 MHz radiofrequency (RF) is a carrier of the low-frequency modulation. The high-frequency part was chosen to select the malignant lesion using the specialties of the tumor: the higher conductivity and dielectric constant of the tumor than its host. The electric field selects the tumor, and the low-frequency amplitude modulation polarizes and excites the transmembrane proteins of the malignant cells. The dominant absorption of the energy by the microscopic clusters of the membrane rafts acts like nanoparticle heating. Exciting the membrane produces various apoptotic signals. The processes were modeled using silico and phantom experiments, which proved the concept. The preclinical verification was made in vitro and in vivo, and in the end, clinical proofs validated the method. Our objective is to follow all the development steps from the laboratory to the clinics in a trilogy of articles. This present is the first part, which deals with in silico, phantom, and in vitro research.
基金the Istituto Tumori Giovanni Paolo II,Bari,Italy Institutional Review Board(Approval No.948/CE).
文摘BACKGROUND An increasing number of studies report the beneficial effects of regional hyperthermia in association with chemotherapy(CHT)and radiotherapy for the treatment of pancreatic cancer;in particular,the use of modulated electrohyperthermia(mEHT)results in increased survival and tumor response.AIM To compare outcomes of CHT alone or in association with mEHT for the treatment of stage III and IV pancreatic cancer.METHODS This was an observational retrospective study;data were collected for patients with stage III-IV pancreatic cancer that were treated with CHT alone or in combination with mEHT from 2003 to 2019.A total of 158 patients were included in the study out 270 patients screened in four Italian hospitals;58(37%)of these received CHT+mEHT and 100(63%)CHT.CHT was mainly gemcitabine-based regimens in both groups.RESULTS Overall(19.5 mo vs 11.02 mo,P<0.001)and progression-free(12 mo vs 3 mo,P<0.001)survival were better for the CHT+mEHT group compared to the CHT group.The association of mEHT resulted also in an improvement of tumor response with disease control rate 95%vs 58%(P<0.001)at 3 mo.Toxicity was comparable in the two study groups,and mEHT related adverse events were limited in 8 patients presenting G1-2 skin burns.CONCLUSION The addition of mEHT to systemic CHT improved overall and progression-free survival and local tumor control with comparable toxicity.
文摘Background: Hyperthermia (HT) in oncology was originally applied as a stand-alone treatment (monotherapy), but achieving temperatures required to cause cellular destruction (>43ºC) proved to be challenging. Lower temperatures may increase the risk of dissemination of the treated tumours. Hyperthermia in the current context of oncology therefore aims to achieve moderate temperatures of 39ºC - 41.5ºC and is applied in combination with chemotherapy (ChT) and/or radiotherapy (RT). Modulated electro-hyperthermia (mEHT) applies amplitude modulation to an electric field generated by a capacitive coupled set-up, to selectively heat tumours. As mEHT does not appear to increase the risk of disease dissemination, it has been investigated as a stand-alone treatment for patients with advanced disease and who have exhausted all other treatment options. This report is a descriptive review of papers in oncology which report on the use of mEHT as a stand-alone treatment in a palliative setting. We aim to establish whether there is motivation for the development of trials to further investigate mEHT as a monotherapy in a palliative setting. Methods: A literature search was conducted using the key words “Oncothermia”, “modulated electro-hyperthermia” and “monotherapy”, and case reports were excluded. Only studies which applied mEHT without ChT or RT;for palliative intent;when conventional therapies have failed;or when no further options are available, were included. Results: Six phase I/II studies on tumours of the liver, brain, pancreas, and stomach were included. The studies demonstrated the safety of mEHT;disease stabilisation;and improved quality of life. Conclusion: mEHT may have a role in the palliative management of certain tumours in the absence of any other treatment options. The development of robustly designed studies on mEHT for palliative management of oncology patients is motivated.
文摘Aim: Heating by nanoparticles, which are located in the tissue to be treated, is a well-recognized method in hyperthermic oncology. Our objective is to investigate selective, nanoscopic heating without concentrating extra artificial nanoparticles. We have in silico calculation to study the heating of the transmembrane protein clusters (rafts) on cell-membrane. The transmembrane protein domains have significantly higher dielectric constant than their lipid neighborhood in the membrane. This difference causes a local gradient in the Specific Absorption Rate (SAR), which could be a factor of heating of the membranes locally, as well as exciting the receptors for various signal transduction in the cells. We suppose that this process determines the observed cellular effects of modulated electro-hyperthermia (mEHT, trade-name: oncothermia). Materials and Methods: In silico models with highly specialized software (Computer Simulation Technology (CST), Darmstadt, Germany) were performed visualizing the selectivity for the membrane domains. Local raft models were created to simulate the electromagnetic (EM) effect of a 13.56 MHz excitation between two perfect electrical conductor plates, simulating the equipotential conditions of the sides of the membrane in the vicinity of the raft. The simulations were performed with near-field (EQS) solver of CST. The electric field, current density, and electric loss density were monitored by the simulations. The applied material properties and parameters refer to the recent literature. Results: In silico models show ten times higher energy-absorption of the transmembrane domains than that of its lipid-membrane surrounding, and intra- and extracellular neighborhood. Depending on the size, orientation, and location of the membrane rafts, the value of SAR varies, but we use only two simplified models to see the absorption properties. Taking into account the characteristics of the EM field effects we showed that the selective energy-absorption increased further by the cell-cell interactions. The model-calculation could confirm the opportunity of the local membrane heating. Conclusion: Our results indicate the heating in nanoscopic range with energy-absorption by the transmembrane proteins. The heated protein-clusters (membrane rafts) are used the same way as the artificial nanoparticles, while these absorbers are natural parts of the biological system.
文摘One of the most frequently applied bioelectromagnetic effects is the deep heating of the living species with EMF energy. Despite its long history, hyperthermia is a rarely applied oncotherapy. The reason is its controversial results and complicated control. One of the solutions is concentrating the electromagnetic energy nanoscopically on the parts of the malignant cells instead of heating up the complete tumor-mass. This approach is a kind of non-uniform energy absorption, providing energy liberation only in the selected regions. The energy-absorption of the malignant cells targets the membranes and creates a situation far from thermal equilibrium. The selection of the malignant cells is based on their decided differences from their healthy counterparts. The distinguishing parameters are the electromagnetic properties of the components of the malignant tissue which are the physiologic differences between the malignant cells and their healthy counterparts. The targets realize nano-range heating, using natural nanoclusters on the cell-membrane without artificially implementing them. This energy absorption generates consequent reactions, like programmed cell-death (apoptosis) continued by immunogenic cell-death involving extended immune reactions.? The applied radiofrequency current is amplitude modulated by time-fractal modulation pattern. The accurately matched impedance realizes the self-selective mechanisms which are promoted by stochastic resonances. This complex method is a new kind of hyperthermia, named mEHT. Our objective is to analyze the problems of the selective, non-equilibrium energy absorption, and present a solution by the electromagnetic mechanisms for an effective and controllable hyperthermia in oncology.
基金supported by the Strategic Priority Research Program of CAS(Grant No.XDB43020202)the Natural Science Foundation of China(Grant Nos.61934007,62274153,62090053).
文摘Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274169,12122405,and 52072188)the National Key Research and Development Program of China(Grant No.2022YFA1402304)+1 种基金the Program for Science and Technology Innovation Team in Zhejiang Province,China(Grant No.2021R01004)the Fundamental Research Funds for the Central Universities.
文摘Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculations to predicted a new 2D conventional superconductor,Tc_(2)B_(2),demonstrating its stable structural configuration.Remarkably,under biaxial strain,the superconducting transition temperature(T_(c))of Tc_(2)B_(2)demonstrates a significant enhancement,achieving 19.5 K under 3%compressive strain and 9.2 K under 11%tensile strain.Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect,which amplifies electron–phonon coupling interactions and consequently elevates Tc.Additionally,the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain.These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金The authors extend their appreciation to the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project under Grant No.(RG-1445-0005).
文摘This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons and positrons as well as stationary positive ions.The reductive perturbation approach reduces the fluid governing equations to the plasma model to a Davey–Stewartson system.This study provides a detailed analysis of the influence of many related plasma parameters,including the density ratio of hot and cold positrons,the external magnetic field strength,the nonthermal parameter and the density ratio of electrons and cold positrons,on the growing rate of instability.Using the Hirota Bilinear method,it is found that the system supports some exact solutions,such as one-and two-dromion solutions.The change of plasma parameters significantly enhances the characteristics of dromion solutions.The elastic and inelastic collisions between two dromions are discussed at different times.The relevance of this study can help us to understand the various types of collision between energetic particles in confined plasma during the production of energy by thermonuclear fusion.
基金Projects(51875584,51875585,51975590)supported by the National Natural Science Foundation of China。
文摘Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.
基金support from the National Key Research and Development Program of China(Grant No.2021YFB3501402)the National Natural Science Foundation of China(Grant Nos.52250313 and 52121001)Yang Liu and Chen Si acknowledge financial support from the National Natural Science Foundation of China(Grant No.12274013).
文摘Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence of the martensitic transformation temperature span on Co content was observed.Before training,quite a narrow temperature span of the martensitic transformation,nearly independent of the Co content,was observed in all single crystals.After training the temperature span was still narrow for 8≤x≤10.9 but was obviously expanded for 10.9<x≤12.High-resolution transmission electron microscopy revealed that at the atomic scale,there exists incommensurate modulated structure in the single phase single crystals,as evidenced by nonperiodic satellite spots in the selected area electronic diffraction patterns.Moreover,the modulated wave vector of the satellite spots was increased by higher Co contents.Combining first principal calculations it was considered that the incommensurate modulated structure originates from the formation of Co-Co pairs.After training arrays of ordered dislocations with the same Burgers vector were introduced for 8≤x≤10.9 but the network of dislocations was formed for 10.9<x≤12.Based on analysis of transmission electron microscopy,geometric phase,thermodynamics,and Landau theory,it was considered that the austenite/martensite phase interface was pinned by the network of dislocations,expanding the temperature span of the martensitic transformation.This work supplies new insights for understanding the microstructure and martensitic transformation of Ni-Mn-Ga-based alloys.
文摘Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.
基金supported by National Natural Science Foundation of China(Nos.52077026,51977023,52177126 and 12475253)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)the Dalian Life&Health Guiding Project(No.2023ZXYG34)。
文摘In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave plasma jet was formed and the microwave-assisted ammonia synthesis can be realized.Impacts of various parameters including the gas flow rate,gas component,microwave absorbed power,pulse modulation frequency,and pulse duty cycle on ammonia synthesis were systematically investigated.To indicate the reaction path of ammonia synthesis,the distributions of both the gas temperature and active species were also studied using optical emission spectra technology.It is found that a considerable amount of ammonia was directly synthesized without involvement of any catalysts,the highest ammonia production rate and energy efficiency(EE),up to 2.93μmol·min^(-1) and 6.64×10^(-2)g·(k W·h)^(-1),respectively,were achieved under low microwave power of 84.42 W.The duty cycle has obvious influences on the synthesis efficiency,compared to a duty cycle of 80%,the ammonia synthesis rate,EE and nitrogen conversion decreased by about 22%at a duty cycle of 100%.This finding underscores the significance of incorporating pulse modulation in the microwave discharge process for ammonia synthesis.Furthermore,it was found that vibrational excitation of microwave plasma has a significant driving effect on ammonia synthesis.
文摘Background: Early research describing the concept of intensity-modulated conformal radiotherapy (IMRT) was based on 7 to 9 beams to reach an adequate level of modulation. Nevertheless, its implementation demands significant resources. Our objective was to compare the compliance and homogeneity of target dose distribution between simplified IMRT and 3D-CRT in patients with cervical cancer and to assess the clinical value of simplified IMRT. Materials and Methods: From 2016 to 2017, 17 patients with stage IIB - IIIC cervical cancer were treated with external beam radiotherapy using simplified IMRT (12 cases) or 3DCRT (05 cases) and brachytherapy. Prior to radiotherapy, CT scans were conducted to delineate the target volume. The clinical target volume (CTV) included the uterus, primary tumor, supravaginal portion of the cervix, paracervical tissue, common iliac, internal and external iliac lymph nodes, obturator, and pre sacral lymph nodes, and the surrounding tissues. If the lower vagina was involved, the target volume included the whole vagina. The planning target volume (PTV) included the CTV with 1 cm anteriorly and 0.5 cm in all other directions. The PTV received 95% of 45 Gy (1.8 Gy/25 fraction). Dose-volume histogram, conformity index, homogeneity index, and treatment time per fraction were compared. Results: The 3D-CRT plan was more homogeneous than the simplified IMRT plan, while the simplified IMRT plan was more conformal. The volume of small bowels that received high-dose radiation significantly increased with simplified IMRT compared to 3D-CRT. Treatment time per fraction was 6 and 13 minutes for 3D-CRT and simplified IMRT, respectively. Conclusion: The simplified IMRT treatment plan is technically and dosimetrically acceptable and an alternative to the classic 3D-CRT plan for cervical cancer. It provides better dose distribution than 3D-CRT. However, the 3D-CRT treatment plan significantly reduced the overall treatment time per fraction.
文摘In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金support from the National Natural Science Foundation of China(Grant Nos.U2233206,61674114,and 91743110)the National Key R&D Program of China(Grant No.2021YFC3002204)+1 种基金Tianjin Applied Basic Research and Advanced Technology(Grant No.17JCJQJC43600)the 111 Project(Grant No.B07014).
文摘Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effects, similar to the thermal action of conventional hyperthermia combined with ionizing radiation (radiotherapy). The electric field and the radiofrequency current produced both the thermal and nonthermal processes. The thermal effects produce the elevated temperature as a thermal background to optimize the nonthermal impacts. The low frequency amplitude modulation ensures accurate targeting and promotes immunogenic cell death to develop the tumor specific memory T cells disrupting the malignant cells by immune surveillance. This process (abscopal effect) works like a vaccination. The low frequency amplitude modulation is combined in the new method with the high power pulses for short time, increasing the tumor distortion ability of the electric field. The new modulation combination has much deeper penetration triplicating the active thickness of the effective treatment. The short pulse absorption increases the safety and decreases the thermal toxicity of the treatment, making the treatment safer. The increased power allows for reduced treatment time with the prescribed dose.
基金financial support from the National Natural Science Foundation of China(21878192 and 51904193)the Fundamental Research Funds for the Central Universities(YJ2021141)the Science and Technology Cooperation Special Fund of Sichuan University and Zigong City(2021CDZG-14)
文摘Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).