在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM...在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM)信号的雷达通信一体化信号形式。将NLFM信号作为16阶正交幅度调制(16QAM)信号的载波,建立NLFM-16QAM雷达通信一体化信号模型,分析该信号的模糊函数以及相关的雷达与通信性能。在此基础上,针对所提出的NLFM-16QAM信号因其通信基带信号的随机性使雷达功能受到影响,从而降低了运动目标探测性能这一问题,将一体化系统的接收端作出改进,提出小波包降噪联合自然梯度算法对NLFM-16QAM信号进行接收处理。仿真结果表明,所提信号的频带利用率明显高于低阶调制的雷达通信一体化信号的频带利用率,在自相关性能方面,所提信号比16QAM-LFM信号的积分旁瓣比降低了23.07 d B,峰值旁瓣比降低了26.08 d B,NLFM-16QAM信号在经过改进接收端的联合算法处理后,运动目标的检测结果获得显著改善。展开更多
针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计...针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。展开更多
Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transce...Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.展开更多
针对多雷达辐射源脉冲交错背景下,线性调频(Linear Frequency Modulation,LFM)信号低信噪比导致的脉冲分裂带来原始信号参数难以估计的问题,本文提出了基于深度神经网络和直方图统计的LFM信号两阶段提取与参数估计方法。首先利用双向长...针对多雷达辐射源脉冲交错背景下,线性调频(Linear Frequency Modulation,LFM)信号低信噪比导致的脉冲分裂带来原始信号参数难以估计的问题,本文提出了基于深度神经网络和直方图统计的LFM信号两阶段提取与参数估计方法。首先利用双向长短时记忆网络挖掘原始脉冲流中LFM信号与非LFM信号的调制模式差异并进行分类;其次通过序列调频斜率直方图寻找LFM信号分裂脉冲序列间隐含的原始信号调频斜率信息,提取不同调频斜率的LFM信号脉冲子序列;最后在每个子序列中分别估计原始信号的参数。仿真实验结果表明,相较于传统的序列差值直方图算法和循环神经网络分选方法,本文所提方法能够更准确地提取出LFM脉冲信号,并得到较为精确的参数估计结果。展开更多
Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculation...Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculations to predicted a new 2D conventional superconductor,Tc_(2)B_(2),demonstrating its stable structural configuration.Remarkably,under biaxial strain,the superconducting transition temperature(T_(c))of Tc_(2)B_(2)demonstrates a significant enhancement,achieving 19.5 K under 3%compressive strain and 9.2 K under 11%tensile strain.Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect,which amplifies electron–phonon coupling interactions and consequently elevates Tc.Additionally,the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain.These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.展开更多
A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data a...A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.展开更多
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons ...This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons and positrons as well as stationary positive ions.The reductive perturbation approach reduces the fluid governing equations to the plasma model to a Davey–Stewartson system.This study provides a detailed analysis of the influence of many related plasma parameters,including the density ratio of hot and cold positrons,the external magnetic field strength,the nonthermal parameter and the density ratio of electrons and cold positrons,on the growing rate of instability.Using the Hirota Bilinear method,it is found that the system supports some exact solutions,such as one-and two-dromion solutions.The change of plasma parameters significantly enhances the characteristics of dromion solutions.The elastic and inelastic collisions between two dromions are discussed at different times.The relevance of this study can help us to understand the various types of collision between energetic particles in confined plasma during the production of energy by thermonuclear fusion.展开更多
Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,...Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.展开更多
Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence ...Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence of the martensitic transformation temperature span on Co content was observed.Before training,quite a narrow temperature span of the martensitic transformation,nearly independent of the Co content,was observed in all single crystals.After training the temperature span was still narrow for 8≤x≤10.9 but was obviously expanded for 10.9<x≤12.High-resolution transmission electron microscopy revealed that at the atomic scale,there exists incommensurate modulated structure in the single phase single crystals,as evidenced by nonperiodic satellite spots in the selected area electronic diffraction patterns.Moreover,the modulated wave vector of the satellite spots was increased by higher Co contents.Combining first principal calculations it was considered that the incommensurate modulated structure originates from the formation of Co-Co pairs.After training arrays of ordered dislocations with the same Burgers vector were introduced for 8≤x≤10.9 but the network of dislocations was formed for 10.9<x≤12.Based on analysis of transmission electron microscopy,geometric phase,thermodynamics,and Landau theory,it was considered that the austenite/martensite phase interface was pinned by the network of dislocations,expanding the temperature span of the martensitic transformation.This work supplies new insights for understanding the microstructure and martensitic transformation of Ni-Mn-Ga-based alloys.展开更多
CO_(2)electroreduction(CO_(2)RR)represents a promising negative-carbon technology,which is in urgent need for efficient and high-selectivity catalysts.Here,a support control strategy is employed for precise surface en...CO_(2)electroreduction(CO_(2)RR)represents a promising negative-carbon technology,which is in urgent need for efficient and high-selectivity catalysts.Here,a support control strategy is employed for precise surface engineering of charge-asymmetry nanocluster catalyst(CuZnSCN),in which zinc and copper atoms together form a metal cluster loaded on sulfur and nitrogen co-etched carbon matrix.The synergistic promotion mechanism of CO_(2)RR by Cu–Zn atom interactions and sulfur–nitrogen atom doping was investigated.A CO partial current density of 74.1 mA cm^(-2)was achieved in an alkaline electrolyte,as well as a considerable CO Faraday efficiency of 97.7%.In situ XAS(X-ray absorption spectroscopy)showed that the stabilization of Cu^(+)and Zn^(2+)species in the nanoclusters and doped sulfur atoms during the CO_(2)RR process contributes to the sustained adsorption of protons and the generation and conversion of the CO.This work verifies the possibility of metal-support and intermetallic interactions to synergistically enhance electrochemical catalytic performance and provides ideas for further bimetallic cluster catalyst development.展开更多
Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because th...Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.展开更多
In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave ...In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave plasma jet was formed and the microwave-assisted ammonia synthesis can be realized.Impacts of various parameters including the gas flow rate,gas component,microwave absorbed power,pulse modulation frequency,and pulse duty cycle on ammonia synthesis were systematically investigated.To indicate the reaction path of ammonia synthesis,the distributions of both the gas temperature and active species were also studied using optical emission spectra technology.It is found that a considerable amount of ammonia was directly synthesized without involvement of any catalysts,the highest ammonia production rate and energy efficiency(EE),up to 2.93μmol·min^(-1) and 6.64×10^(-2)g·(k W·h)^(-1),respectively,were achieved under low microwave power of 84.42 W.The duty cycle has obvious influences on the synthesis efficiency,compared to a duty cycle of 80%,the ammonia synthesis rate,EE and nitrogen conversion decreased by about 22%at a duty cycle of 100%.This finding underscores the significance of incorporating pulse modulation in the microwave discharge process for ammonia synthesis.Furthermore,it was found that vibrational excitation of microwave plasma has a significant driving effect on ammonia synthesis.展开更多
文摘在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM)信号的雷达通信一体化信号形式。将NLFM信号作为16阶正交幅度调制(16QAM)信号的载波,建立NLFM-16QAM雷达通信一体化信号模型,分析该信号的模糊函数以及相关的雷达与通信性能。在此基础上,针对所提出的NLFM-16QAM信号因其通信基带信号的随机性使雷达功能受到影响,从而降低了运动目标探测性能这一问题,将一体化系统的接收端作出改进,提出小波包降噪联合自然梯度算法对NLFM-16QAM信号进行接收处理。仿真结果表明,所提信号的频带利用率明显高于低阶调制的雷达通信一体化信号的频带利用率,在自相关性能方面,所提信号比16QAM-LFM信号的积分旁瓣比降低了23.07 d B,峰值旁瓣比降低了26.08 d B,NLFM-16QAM信号在经过改进接收端的联合算法处理后,运动目标的检测结果获得显著改善。
文摘针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。
基金supported by the Strategic Priority Research Program of CAS(Grant No.XDB43020202)the Natural Science Foundation of China(Grant Nos.61934007,62274153,62090053).
文摘Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.
文摘针对多雷达辐射源脉冲交错背景下,线性调频(Linear Frequency Modulation,LFM)信号低信噪比导致的脉冲分裂带来原始信号参数难以估计的问题,本文提出了基于深度神经网络和直方图统计的LFM信号两阶段提取与参数估计方法。首先利用双向长短时记忆网络挖掘原始脉冲流中LFM信号与非LFM信号的调制模式差异并进行分类;其次通过序列调频斜率直方图寻找LFM信号分裂脉冲序列间隐含的原始信号调频斜率信息,提取不同调频斜率的LFM信号脉冲子序列;最后在每个子序列中分别估计原始信号的参数。仿真实验结果表明,相较于传统的序列差值直方图算法和循环神经网络分选方法,本文所提方法能够更准确地提取出LFM脉冲信号,并得到较为精确的参数估计结果。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274169,12122405,and 52072188)the National Key Research and Development Program of China(Grant No.2022YFA1402304)+1 种基金the Program for Science and Technology Innovation Team in Zhejiang Province,China(Grant No.2021R01004)the Fundamental Research Funds for the Central Universities.
文摘Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculations to predicted a new 2D conventional superconductor,Tc_(2)B_(2),demonstrating its stable structural configuration.Remarkably,under biaxial strain,the superconducting transition temperature(T_(c))of Tc_(2)B_(2)demonstrates a significant enhancement,achieving 19.5 K under 3%compressive strain and 9.2 K under 11%tensile strain.Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect,which amplifies electron–phonon coupling interactions and consequently elevates Tc.Additionally,the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain.These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.
基金supported by the National Natural Science Foundation of China(62175034,62175036,32271510)the National Key R&D Program of China(2021YFF0502900)+2 种基金the Science and Technology Research Program of Shanghai(Grant No.19DZ2282100)the Shanghai Key Laboratory of Metasurfaces for Light Manipulation(23dz2260100)the Shanghai Engineering Technology Research Center of Hair Medicine(19DZ2250500).
文摘A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金The authors extend their appreciation to the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project under Grant No.(RG-1445-0005).
文摘This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons and positrons as well as stationary positive ions.The reductive perturbation approach reduces the fluid governing equations to the plasma model to a Davey–Stewartson system.This study provides a detailed analysis of the influence of many related plasma parameters,including the density ratio of hot and cold positrons,the external magnetic field strength,the nonthermal parameter and the density ratio of electrons and cold positrons,on the growing rate of instability.Using the Hirota Bilinear method,it is found that the system supports some exact solutions,such as one-and two-dromion solutions.The change of plasma parameters significantly enhances the characteristics of dromion solutions.The elastic and inelastic collisions between two dromions are discussed at different times.The relevance of this study can help us to understand the various types of collision between energetic particles in confined plasma during the production of energy by thermonuclear fusion.
基金Projects(51875584,51875585,51975590)supported by the National Natural Science Foundation of China。
文摘Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.
基金support from the National Key Research and Development Program of China(Grant No.2021YFB3501402)the National Natural Science Foundation of China(Grant Nos.52250313 and 52121001)Yang Liu and Chen Si acknowledge financial support from the National Natural Science Foundation of China(Grant No.12274013).
文摘Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence of the martensitic transformation temperature span on Co content was observed.Before training,quite a narrow temperature span of the martensitic transformation,nearly independent of the Co content,was observed in all single crystals.After training the temperature span was still narrow for 8≤x≤10.9 but was obviously expanded for 10.9<x≤12.High-resolution transmission electron microscopy revealed that at the atomic scale,there exists incommensurate modulated structure in the single phase single crystals,as evidenced by nonperiodic satellite spots in the selected area electronic diffraction patterns.Moreover,the modulated wave vector of the satellite spots was increased by higher Co contents.Combining first principal calculations it was considered that the incommensurate modulated structure originates from the formation of Co-Co pairs.After training arrays of ordered dislocations with the same Burgers vector were introduced for 8≤x≤10.9 but the network of dislocations was formed for 10.9<x≤12.Based on analysis of transmission electron microscopy,geometric phase,thermodynamics,and Landau theory,it was considered that the austenite/martensite phase interface was pinned by the network of dislocations,expanding the temperature span of the martensitic transformation.This work supplies new insights for understanding the microstructure and martensitic transformation of Ni-Mn-Ga-based alloys.
基金financially supported by the National Natural Science Foundation of China(No.22375019)Beijing Institute of Technology Research Fund Program for Young Scholars(No.3090012221909)
文摘CO_(2)electroreduction(CO_(2)RR)represents a promising negative-carbon technology,which is in urgent need for efficient and high-selectivity catalysts.Here,a support control strategy is employed for precise surface engineering of charge-asymmetry nanocluster catalyst(CuZnSCN),in which zinc and copper atoms together form a metal cluster loaded on sulfur and nitrogen co-etched carbon matrix.The synergistic promotion mechanism of CO_(2)RR by Cu–Zn atom interactions and sulfur–nitrogen atom doping was investigated.A CO partial current density of 74.1 mA cm^(-2)was achieved in an alkaline electrolyte,as well as a considerable CO Faraday efficiency of 97.7%.In situ XAS(X-ray absorption spectroscopy)showed that the stabilization of Cu^(+)and Zn^(2+)species in the nanoclusters and doped sulfur atoms during the CO_(2)RR process contributes to the sustained adsorption of protons and the generation and conversion of the CO.This work verifies the possibility of metal-support and intermetallic interactions to synergistically enhance electrochemical catalytic performance and provides ideas for further bimetallic cluster catalyst development.
文摘Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.
基金supported by National Natural Science Foundation of China(Nos.52077026,51977023,52177126 and 12475253)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)the Dalian Life&Health Guiding Project(No.2023ZXYG34)。
文摘In this study,we explored a one-step direct synthesis of NH3 under mild experimental conditions utilizing pulse-modulated microwave plasma technology at atmospheric pressure.At a substantial gas flow rate,a microwave plasma jet was formed and the microwave-assisted ammonia synthesis can be realized.Impacts of various parameters including the gas flow rate,gas component,microwave absorbed power,pulse modulation frequency,and pulse duty cycle on ammonia synthesis were systematically investigated.To indicate the reaction path of ammonia synthesis,the distributions of both the gas temperature and active species were also studied using optical emission spectra technology.It is found that a considerable amount of ammonia was directly synthesized without involvement of any catalysts,the highest ammonia production rate and energy efficiency(EE),up to 2.93μmol·min^(-1) and 6.64×10^(-2)g·(k W·h)^(-1),respectively,were achieved under low microwave power of 84.42 W.The duty cycle has obvious influences on the synthesis efficiency,compared to a duty cycle of 80%,the ammonia synthesis rate,EE and nitrogen conversion decreased by about 22%at a duty cycle of 100%.This finding underscores the significance of incorporating pulse modulation in the microwave discharge process for ammonia synthesis.Furthermore,it was found that vibrational excitation of microwave plasma has a significant driving effect on ammonia synthesis.