期刊文献+
共找到916篇文章
< 1 2 46 >
每页显示 20 50 100
Phase Transitions of Majority-Vote Model on Modular Networks
1
作者 黄凤 陈含爽 申传胜 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期178-181,共4页
We investigate the phase transitions behavior of the majority-vote model with noise on a topology that consists of two coupled random networks. A parameter p is used to measure the degree of modularity, defined as the... We investigate the phase transitions behavior of the majority-vote model with noise on a topology that consists of two coupled random networks. A parameter p is used to measure the degree of modularity, defined as the ratio of intermodular to intramodular connectivity. For the networks of strong modularity (small p), as the level of noise f increases, the system undergoes successively two transitions at two distinct critical noises, fc1 and fc2. The first transition is a discontinuous jump from a coexistence state of parallel and antiparallel order to a state that only parallel order survives, and the second one is continuous that separates the ordered state from a disordered state. As the network modularity worsens, fc1 becomes smaller and fc1 does not change, such that the antiparallel ordered state will vanish if p is larger than a critical value of pc. We propose a mean-field theory to explain the simulation results. 展开更多
关键词 Phase Transitions of Majority-Vote Model on modular networks
原文传递
A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network 被引量:6
2
作者 金龙 金健 姚才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期428-435,共8页
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ... In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model. 展开更多
关键词 modular fuzzy neural network short-term climate prediction flood season
在线阅读 下载PDF
Prediction of NO_(x)concentration using modular long short-term memory neural network for municipal solid waste incineration 被引量:4
3
作者 Haoshan Duan Xi Meng +1 位作者 Jian Tang Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期46-57,共12页
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis... Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network. 展开更多
关键词 Municipal solid waste incineration NO_(x)concentration prediction modular neural network Model
在线阅读 下载PDF
Interpreting Nestedness and Modularity Structures in Affiliation Networks: An Application in Knowledge Networks Formed by Software Project Teams 被引量:1
4
作者 Jorge Luiz dos Santos Renelson Ribeiro Sampaio 《Social Networking》 2021年第1期1-18,共18页
An understanding of the knowledge creation and diffusion process in the organizational context is extremely relevant. Because from this understanding, organizations can restructure processes, reorient teams and implem... An understanding of the knowledge creation and diffusion process in the organizational context is extremely relevant. Because from this understanding, organizations can restructure processes, reorient teams and implement methodologies to assist in the construction of an evolutionary process of knowledge creation and diffusion aimed at sustainable growth and innovation. The theory of complex social networks has been applied in several fields to help understand organizational cognitive processes. However, these approaches still insipiently consider the analysis of the nestedness and modularity of the studied networks. In this article, we presented an approach that sought to identify patterns of nestedness and modularity in networks of affiliation of people in projects in the organizational context. The study sought to identify these patterns in affiliation networks in a public organization providing information technology services in the period from 2006 to 2013. The detection of these patterns was performed using the NODF (Nestedness metric based on Overlap and Decreasing Fill) algorithm described by <a href="#ref1">[1]</a>. The nestedness and modularity metrics can influence patterns of knowledge creation and diffusion in formal and informal networks constituted for the execution of projects in organizations. This study showed that the network structures of the organization during the study period presented a high degree of nestedness, and it was possible to identify combined structures of nestedness and modularity. 展开更多
关键词 Social network Analysis Affiliation networks modularITY NESTEDNESS
在线阅读 下载PDF
Link prediction in complex networks via modularity-based belief propagation 被引量:1
5
作者 赖大荣 舒欣 Christine Nardini 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期604-614,共11页
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe... Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks. 展开更多
关键词 link prediction complex network belief propagation modularITY
原文传递
An evolving network model with modular growth 被引量:1
6
作者 Zou Zhi-Yun Liu Peng +1 位作者 Lei Li Gao Jian-Zhi 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期603-609,共7页
In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing... In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner- module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. 展开更多
关键词 EVOLVING modular growth small-world network scale-free network
原文传递
MNN-XSS:Modular Neural Network Based Approach for XSS Attack Detection
7
作者 Ahmed Abdullah Alqarni Nizar Alsharif +3 位作者 Nayeem Ahmad Khan Lilia Georgieva Eric Pardade Mohammed Y.Alzahrani 《Computers, Materials & Continua》 SCIE EI 2022年第2期4075-4085,共11页
The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing.A number of detection systems are used in an at... The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing.A number of detection systems are used in an attempt to detect known attacks using signatures in network traffic.In recent years,researchers have used different machine learning methods to detect network attacks without relying on those signatures.The methods generally have a high false-positive rate which is not adequate for an industry-ready intrusion detection product.In this study,we propose and implement a new method that relies on a modular deep neural network for reducing the false positive rate in the XSS attack detection system.Experiments were performed using a dataset consists of 1000 malicious and 10000 benign sample.The model uses 50 features selected by using Pearson correlation method and will be used in the detection and preventions of XSS attacks.The results obtained from the experiments depict improvement in the detection accuracy as high as 99.96%compared to other approaches. 展开更多
关键词 CYBERSECURITY XSS deep learning modular neural network
在线阅读 下载PDF
Inverse stochastic resonance in modular neural network with synaptic plasticity
8
作者 于永涛 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期45-52,共8页
This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s... This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience. 展开更多
关键词 inverse stochastic resonance synaptic plasticity modular neural network
原文传递
Detecting and describing the modular structures of weighted networks
9
作者 李克平 高自友 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第8期2304-2309,共6页
In the functional properties of complex networks, modules play a central role. In this paper, we propose a new method to detect and describe the modular structures of weighted networks. In order to test the proposed m... In the functional properties of complex networks, modules play a central role. In this paper, we propose a new method to detect and describe the modular structures of weighted networks. In order to test the proposed method, as an example, we use our method to analyse the structural properties of the Chinese railway network. Here, the stations are regarded as the nodes and the track sections are regarded as the links. Rigorous analysis of the existing data shows that using the proposed algorithm, the nodes of network can be classified naturally. Moreover, there are several core nodes in each module. Remarkably, we introduce the correlation function Grs, and use it to distinguish the different modules in weighted networks. 展开更多
关键词 weighted networks modular structure railway network
原文传递
基于模糊Modular神经网络的官厅水库及邻区的地震危险性估计 被引量:4
10
作者 武安绪 吴培稚 张丽芳 《西北地震学报》 CSCD 北大核心 2005年第z1期65-71,共7页
首先介绍了模糊Modular神经网络的原理、建模方法与仿真实验,然后利用该方法把一些常用的地震学指标作为神经网络的输入,未来50年最大震级则作为网络的期望输出,对官厅水库及邻区的地震活动进行学习与最大震级序列建模,进行危险性预测... 首先介绍了模糊Modular神经网络的原理、建模方法与仿真实验,然后利用该方法把一些常用的地震学指标作为神经网络的输入,未来50年最大震级则作为网络的期望输出,对官厅水库及邻区的地震活动进行学习与最大震级序列建模,进行危险性预测。通过分析,认为该方法在一定程度上具有学习、建模与外推预测泛化能力,具有很好的中长期地震危险性预测效果,可以作为中长期地震危险性分析的工具。 展开更多
关键词 官厅水库及邻区 模糊modular神经网络 地震危险性预测
在线阅读 下载PDF
改进的模糊Modular神经网络在既有建筑可靠性鉴定中的应用 被引量:3
11
作者 张克纯 陆洲导 项凯 《结构工程师》 2007年第6期37-42,共6页
在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modu... 在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modular神经网络模型具有预测性能好、训练学习速度快的优点,它的系统门网络采用模糊C均值聚类算法代替K-means算法,专家网络的训练中引进了先进的Levenberg-Marquardt算法。在应用改进的模糊Modular神经网络模型对既有建筑进行可靠性鉴定的过程中,综合考虑了各主要因素对既有建筑可靠性鉴定等级的影响,并将经量化处理的影响因素作为网络的外部输入,将网络计算得到的4个输出值分别作为样本对应于不同可靠性等级的隶属度,建筑可靠性鉴定的最终评判等级为最大隶属度所对应的等级。训练和预测样本的计算结果证明了改进的模糊Modular神经网络模型在既有建筑可靠性鉴定中应用的可行性和有效性。 展开更多
关键词 modular神经网络 可靠性鉴定 既有建筑 模糊C均值 LEVENBERG-MARQUARDT 算法
在线阅读 下载PDF
一种模糊Modular神经网络模型及其应用 被引量:1
12
作者 于百胜 黄文虎 《强度与环境》 2002年第3期43-46,63,共5页
将神经网络模糊系统与模糊C均值聚类法相结合 ,对模糊Modular神经网络进行研究 ,提出了该模糊神经网络模型的多输出结构及其学习算法 ,据此开发了模糊神经网络诊断系统 ,并将其用于某电源分系统的诊断分析 ,运行的结果表明 。
关键词 神经网络模型 模糊神经网络 模糊C平均法 modular网络
在线阅读 下载PDF
基于Modular网络和EM-SFM算法的模糊Sugeno模型(英文)
13
作者 王士同 J.F.鲍尔蕴 T.马丁 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第3期333-340,共8页
基于Modular网络重新解释了广为使用的模糊Sugeno模型 .随后 ,基于EM算法 ,提出了该模型的新算法EM SFM ,证明了该算法的线性收敛法 ,分析了它的收敛速度 .
关键词 模糊Sugeno模型 modular网络 收敛 EM-SFM算法 人工智能
在线阅读 下载PDF
Cascades with coupled map lattices in preferential attachment community networks 被引量:6
14
作者 崔迪 高自友 赵小梅 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1703-1708,共6页
In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by sim... In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks. 展开更多
关键词 community networks modularITY coupled map lattices cascading failure
原文传递
Understanding biological functions through molecular networks 被引量:7
15
作者 Han,JD 《Cell Research》 SCIE CAS CSCD 2008年第2期224-237,共14页
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approa... The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future. 展开更多
关键词 network data integration modularity molecular function genetic variation
暂未订购
模糊Modular神经网络在黄金矿区可持续发展能力评价模型中的应用
16
作者 吴刚 刘胜富 《黄金》 CAS 2003年第9期16-20,共5页
以黄金矿区可持续发展能力的评价为研究对象 ,以矿区REES系统经济、社会、环境、资源子系统的综合发展水平、可持续发展度以及相互之间的状态协调度作为评价指标 ,建立了模糊Modular神经网络评价模型。通过实例分析 ,证明该模型具有较... 以黄金矿区可持续发展能力的评价为研究对象 ,以矿区REES系统经济、社会、环境、资源子系统的综合发展水平、可持续发展度以及相互之间的状态协调度作为评价指标 ,建立了模糊Modular神经网络评价模型。通过实例分析 ,证明该模型具有较好的泛化、学习和映射能力 ,对类似于可持续发展能力的非线性系统评价有一定的参考价值。 展开更多
关键词 可持续发展能力 评价指标体系 模糊modular神经网络
在线阅读 下载PDF
模糊化的Modular模糊神经网络降水预报模型研究
17
作者 黄颖 金龙 主毅 《计算机工程与设计》 CSCD 北大核心 2008年第18期4797-4800,共4页
以广西西南部前汛期5、6月25个气象站平均逐日降水量作为预报对象,采用自然正交分解方法和模糊化方法对输入因子预处理后,结合Modular模糊神经网络建立了一种新的降水预报模型,并进行了逐日业务预报应用试验。结果表明,该降水预报模型... 以广西西南部前汛期5、6月25个气象站平均逐日降水量作为预报对象,采用自然正交分解方法和模糊化方法对输入因子预处理后,结合Modular模糊神经网络建立了一种新的降水预报模型,并进行了逐日业务预报应用试验。结果表明,该降水预报模型比常规Modular模糊神经网络方法及逐步回归方法有更高的预报精度,具有较好的业务应用前景。 展开更多
关键词 模糊化 模块化模糊神经网络 自然正交展开 逐日降水量 预报建模
在线阅读 下载PDF
Quantitative identification of compounds-dependent on-modules and differential allosteric modules from homologous ischemic networks 被引量:5
18
作者 LI Bing LIU Jun +4 位作者 ZHANG Ying-ying WANG Peng-qian KANG Rui-xia WANG Zhong WANG Yong-yan 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1085-1085,共1页
Module-based methods have made much progress in deconstructing biological networks.However,it is a great challenge to quantitatively compare the topological structural variations of modules(allosteric modules,AMs)unde... Module-based methods have made much progress in deconstructing biological networks.However,it is a great challenge to quantitatively compare the topological structural variations of modules(allosteric modules,AMs)under different situations.A total of 23,42 and 15co-expression modules were identified in baicalin(BA),jasminoidin(JA)and ursodeoxycholic acid(UA)in a global anti-ischemic mice network,respectively.Then,we integrated the methods of module-based consensus ratio(MCR)and modified Z summary module statistic to validate 12 BA,22 JA and 8 UA on-modules based on comparing with vehicle.The MCRs for pairwise comparisons were 1.55%(BA vs JA),1.45%(BA vs UA),and1.27%(JA vs UA),respectively.Five conserved allosteric modules(CAMs)and 17 unique allosteric modules(UAMs)were identified among these groups.In conclusion,module-centric analysis may provide us a unique approach to understand multiple pharmacological mechanisms associated with differential phenotypes in the era of modular pharmacology. 展开更多
关键词 cerebral ischemia gene expression network network pharmacology modular pharmacology
暂未订购
Overlapping Community Detection in Dynamic Networks 被引量:3
19
作者 Nathan Aston Jacob Hertzler Wei Hu 《Journal of Software Engineering and Applications》 2014年第10期872-882,共11页
Due to the increasingly large size and changing nature of social networks, algorithms for dynamic networks have become an important part of modern day community detection. In this paper, we use a well-known static com... Due to the increasingly large size and changing nature of social networks, algorithms for dynamic networks have become an important part of modern day community detection. In this paper, we use a well-known static community detection algorithm and modify it to discover communities in dynamic networks. We have developed a dynamic community detection algorithm based on Speaker-Listener Label Propagation Algorithm (SLPA) called SLPA Dynamic (SLPAD). This algorithm, tested on two real dynamic networks, cuts down on the time that it would take SLPA to run, as well as produces similar, and in some cases better, communities. We compared SLPAD to SLPA, LabelRankT, and another algorithm we developed, Dynamic Structural Clustering Algorithm for Networks Overlapping (DSCAN-O), to further test its validity and ability to detect overlapping communities when compared to other community detection algorithms. SLPAD proves to be faster than all of these algorithms, as well as produces communities with just as high modularity for each network. 展开更多
关键词 COMMUNITY DETECTION modularITY Dynamic networks OVERLAPPING COMMUNITY DETECTION LABEL PROPAGATION
在线阅读 下载PDF
Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks 被引量:5
20
作者 William Deitrick Wei Hu 《Journal of Data Analysis and Information Processing》 2013年第3期19-29,共11页
The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from soci... The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community detection and sentiment analysis. Using sentiment classification to enhance community detection and community partitions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four networks from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Microsoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 days. By combining community detection and sentiment analysis, modularity values were increased for the community partitions detected in three of the four networks studied. Furthermore, data collected during the community detection process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the dataset. 展开更多
关键词 COMMUNITY Detection SENTIMENT ANALYSIS TWITTER Online Social networkS modularITY Community-Level SENTIMENT ANALYSIS
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部