Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of t...Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of these compounds collected from various journals were compared with proposed model and found to be more accurate than other widely used cubic equations of state like SRK and Peng Robinson. The form of current EOS best suits to PVT data and total error is almost halved for a set of experimental data in the most cases.展开更多
In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system w...In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system with three singular straight lines,and derive all possible phase portraits under corresponding parameter conditions.Then we show the existence and dynamics of two types of peaked traveling wave solutions including peakons and periodic cusp wave solutions.The exact explicit expressions of two peakons are given.Besides,we also derive smooth solitary wave solutions,periodic wave solutions,compacton solutions,and kink-like(antikink-like)solutions.Numerical simulations are further performed to verify the correctness of the results.Most importantly,peakons and periodic cusp wave solutions are newly found for the equation,which extends the previous results.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
In this paper,a variable-coefficient modified Kadomtsev-Petviashvili(vcm KP)system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and ...In this paper,a variable-coefficient modified Kadomtsev-Petviashvili(vcm KP)system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and nonlinear waves in plasma physics and electrodynamics.Painlevéanalysis is given out,and an auto-B?cklund transformation is constructed via the truncated Painlevéexpansion.Based on the auto-B?cklund transformation,analytic solutions are given,including the solitonic,periodic and rational solutions.Using the Lie symmetry approach,infinitesimal generators and symmetry groups are presented.With the Lagrangian,the vcm KP equation is shown to be nonlinearly self-adjoint.Moreover,conservation laws for the vcm KP equation are derived by means of a general conservation theorem.Besides,the physical characteristics of the influences of the coefficient parameters on the solutions are discussed graphically.Those solutions have comprehensive implications for the propagation of solitary waves in nonuniform backgrounds.展开更多
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature...In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.展开更多
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With th...The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.展开更多
Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in de...Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.展开更多
In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion m...In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.展开更多
This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x...This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.展开更多
In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Usi...In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.展开更多
Diesel hydrotreatment removes heteroatoms and polycyclic aromatics in diesel in the presence of highpressure hydrogen gas.The hydrogen solubility is the basis for hydrogen consumption prediction and process design/opt...Diesel hydrotreatment removes heteroatoms and polycyclic aromatics in diesel in the presence of highpressure hydrogen gas.The hydrogen solubility is the basis for hydrogen consumption prediction and process design/optimization.In the presented study,we established a method to predict the hydrogen solubility of diesel molecules and mixture.A modified Henry equation was proposed to illustrate the hydrogen solubility variation among the temperature and pressure.The parameters of the modified Henry equation for typical molecules were regressed from literature data.Then we established an empirical correlation between the parameter and the structure and property of molecules.The method was then combined with a molecular-level compositional model to accurately predict the hydrogen solubility in diesel,illustrating the validity of the method.展开更多
The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Sch...The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.展开更多
Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integ...Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.展开更多
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco...In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.展开更多
This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave i...This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.展开更多
We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane ...We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.展开更多
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the...In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.展开更多
In this paper the authors consider the existence and uniqueness of the solution to the initial boundary value problem for a class of modified Zakharov equations, prove the global existence of the solution to the probl...In this paper the authors consider the existence and uniqueness of the solution to the initial boundary value problem for a class of modified Zakharov equations, prove the global existence of the solution to the problem by a priori integral estimates and Galerkin method.展开更多
The dark Korteweg-de Vries (KdV) systems are defined and classified by Kupershmidt sixteen years ago. However, there is no other classifications for other kinds of nonlinear systems. In this paper, a complete scalar...The dark Korteweg-de Vries (KdV) systems are defined and classified by Kupershmidt sixteen years ago. However, there is no other classifications for other kinds of nonlinear systems. In this paper, a complete scalar classification for dark modified KdV (MKdV) systems is obtained by requiring the existence of higher order differential polynomial symmetries. Different to the nine classes of the dark KdV case, there exist twelve independent classes of the dark MKdV equations. Fhrthermore, for the every class of dark MKdV system, there is a free parameter. Only for a fixed parameter, the dark MKdV can be related to dark KdV via suitable Miura transformation. The reeursion operators of two classes of dark MKdV systems are also given.展开更多
文摘Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of these compounds collected from various journals were compared with proposed model and found to be more accurate than other widely used cubic equations of state like SRK and Peng Robinson. The form of current EOS best suits to PVT data and total error is almost halved for a set of experimental data in the most cases.
基金Supported by the National Natural Science Foundation of China(12071162)the Natural Science Foundation of Fujian Province(2021J01302)the Fundamental Research Funds for the Central Universities(ZQN-802).
文摘In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system with three singular straight lines,and derive all possible phase portraits under corresponding parameter conditions.Then we show the existence and dynamics of two types of peaked traveling wave solutions including peakons and periodic cusp wave solutions.The exact explicit expressions of two peakons are given.Besides,we also derive smooth solitary wave solutions,periodic wave solutions,compacton solutions,and kink-like(antikink-like)solutions.Numerical simulations are further performed to verify the correctness of the results.Most importantly,peakons and periodic cusp wave solutions are newly found for the equation,which extends the previous results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
文摘In this paper,a variable-coefficient modified Kadomtsev-Petviashvili(vcm KP)system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and nonlinear waves in plasma physics and electrodynamics.Painlevéanalysis is given out,and an auto-B?cklund transformation is constructed via the truncated Painlevéexpansion.Based on the auto-B?cklund transformation,analytic solutions are given,including the solitonic,periodic and rational solutions.Using the Lie symmetry approach,infinitesimal generators and symmetry groups are presented.With the Lagrangian,the vcm KP equation is shown to be nonlinearly self-adjoint.Moreover,conservation laws for the vcm KP equation are derived by means of a general conservation theorem.Besides,the physical characteristics of the influences of the coefficient parameters on the solutions are discussed graphically.Those solutions have comprehensive implications for the propagation of solitary waves in nonuniform backgrounds.
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(2015JM5204)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(Z2015064)supported by the Graduate Starting Seed Fund of the Northwestern Polytechnical University,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+2 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006Chinese Ministry of Education, and Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201010772020
文摘The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
文摘Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.
基金Supported by the National Natural Science Foundation of China (10871075)Natural Science Foundation of Guangdong Province,China (9151064201000040)
文摘In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.
基金supported by the NSF of China(10571079,10671085)and the program of NCET
文摘This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.
基金supported by NNSFC under grant numbers 10771074 and 11171116supported in part by NNSFC under grant number 10801055+1 种基金the Doctoral Program of NEM of China under grant number 200805611026supported in part by the Fundamental Research Funds for the Central Universities under the grant number 2012ZZ0072
文摘In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702400)the Science Foundation of China University of Petroleum,Beijing(Nos.2462018BJC003 and 2462018QZDX04)。
文摘Diesel hydrotreatment removes heteroatoms and polycyclic aromatics in diesel in the presence of highpressure hydrogen gas.The hydrogen solubility is the basis for hydrogen consumption prediction and process design/optimization.In the presented study,we established a method to predict the hydrogen solubility of diesel molecules and mixture.A modified Henry equation was proposed to illustrate the hydrogen solubility variation among the temperature and pressure.The parameters of the modified Henry equation for typical molecules were regressed from literature data.Then we established an empirical correlation between the parameter and the structure and property of molecules.The method was then combined with a molecular-level compositional model to accurately predict the hydrogen solubility in diesel,illustrating the validity of the method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.
文摘Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.
基金Supported by National Natural Science Foundation of China under Grant No.11505090Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009
文摘This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11361069 and 11775146).
文摘We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)
文摘In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.
基金A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (10C1056)Scientific Research Found of Huaihua University (HHUY2011-01)
文摘In this paper the authors consider the existence and uniqueness of the solution to the initial boundary value problem for a class of modified Zakharov equations, prove the global existence of the solution to the problem by a priori integral estimates and Galerkin method.
基金Supported by the Global Change Research Program of China under Grant No.2015Cb953904National Natural Science Foundation of China under Grant Nos.11675054,11435005,11175092,and 11205092+1 种基金Shanghai Knowledge Service Platform for Trustworthy Internet of Things(No.ZF1213)K.C.Wong Magna Fund in Ningbo University
文摘The dark Korteweg-de Vries (KdV) systems are defined and classified by Kupershmidt sixteen years ago. However, there is no other classifications for other kinds of nonlinear systems. In this paper, a complete scalar classification for dark modified KdV (MKdV) systems is obtained by requiring the existence of higher order differential polynomial symmetries. Different to the nine classes of the dark KdV case, there exist twelve independent classes of the dark MKdV equations. Fhrthermore, for the every class of dark MKdV system, there is a free parameter. Only for a fixed parameter, the dark MKdV can be related to dark KdV via suitable Miura transformation. The reeursion operators of two classes of dark MKdV systems are also given.