All task scheduling applications need to ensure that resources are optimally used,performance is enhanced,and costs are minimized.The purpose of this paper is to discuss how to Fitness Calculate Values(FCVs)to provide...All task scheduling applications need to ensure that resources are optimally used,performance is enhanced,and costs are minimized.The purpose of this paper is to discuss how to Fitness Calculate Values(FCVs)to provide application software with a reliable solution during the initial stages of load balancing.The cloud computing environment is the subject of this study.It consists of both physical and logical components(most notably cloud infrastructure and cloud storage)(in particular cloud services and cloud platforms).This intricate structure is interconnected to provide services to users and improve the overall system’s performance.This case study is one of the most important segments of cloud computing,i.e.,Load Balancing.This paper aims to introduce a new approach to balance the load among Virtual Machines(VM’s)of the cloud computing environment.The proposed method led to the proposal and implementation of an algorithm inspired by the Bat Algorithm(BA).This proposed Modified Bat Algorithm(MBA)allows balancing the load among virtual machines.The proposed algorithm works in two variants:MBA with Overloaded Optimal Virtual Machine(MBAOOVM)and Modified Bat Algorithm with Balanced Virtual Machine(MBABVM).MBA generates cost-effective solutions and the strengths of MBA are finally validated by comparing it with Bat Algorithm.展开更多
In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more ...In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more reliably and economically. In this regard, this paper proposes a novel solution methodology based on bat algorithm to solve the op- timal energy management of MG including several RESs with the back-up of Fuel Cell (FC), Wind Turbine (WT), Photovoltaics (PV), Micro Turbine (MT) as well as storage devices to meet the energy mismatch. The problem is formulated as a nonlinear constraint optimization problem to minimize the total cost of the grid and RESs, simultaneously. In addition, the problem considers the interactive effects of MG and utility in a 24 hour time interval which would in- crease the complexity of the problem from the optimization point of view more severely. The proposed optimization technique is consisted of a self adaptive modification method compromised of two modification methods based on bat algorithm to explore the total search space globally. The superiority of the proposed method over the other well-known algorithms is demonstrated through a typical renewable MG as the test system.展开更多
This work studies the robust deadlock control of automated manufacturing systems with multiple unreliable resources. Our goal is to ensure the continuous production of the jobs that only require reliable resources. To...This work studies the robust deadlock control of automated manufacturing systems with multiple unreliable resources. Our goal is to ensure the continuous production of the jobs that only require reliable resources. To reach this goal, we propose a new modified Banker's algorithm(MBA) to ensure that all resources required by these jobs can be freed. Moreover,a Petri net based deadlock avoidance policy(DAP) is introduced to ensure that all jobs remaining in the system after executing the new MBA can complete their processing smoothly when their required unreliable resources are operational. The new MBA together with the DAP forms a new DAP that is robust to the failures of unreliable resources. Owing to the high permissiveness of the new MBA and the optimality of the DAP, it is tested to be more permissive than state-of-the-art control policies.展开更多
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/313),Taif University,Taif,Saudi Arabia.
文摘All task scheduling applications need to ensure that resources are optimally used,performance is enhanced,and costs are minimized.The purpose of this paper is to discuss how to Fitness Calculate Values(FCVs)to provide application software with a reliable solution during the initial stages of load balancing.The cloud computing environment is the subject of this study.It consists of both physical and logical components(most notably cloud infrastructure and cloud storage)(in particular cloud services and cloud platforms).This intricate structure is interconnected to provide services to users and improve the overall system’s performance.This case study is one of the most important segments of cloud computing,i.e.,Load Balancing.This paper aims to introduce a new approach to balance the load among Virtual Machines(VM’s)of the cloud computing environment.The proposed method led to the proposal and implementation of an algorithm inspired by the Bat Algorithm(BA).This proposed Modified Bat Algorithm(MBA)allows balancing the load among virtual machines.The proposed algorithm works in two variants:MBA with Overloaded Optimal Virtual Machine(MBAOOVM)and Modified Bat Algorithm with Balanced Virtual Machine(MBABVM).MBA generates cost-effective solutions and the strengths of MBA are finally validated by comparing it with Bat Algorithm.
文摘In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more reliably and economically. In this regard, this paper proposes a novel solution methodology based on bat algorithm to solve the op- timal energy management of MG including several RESs with the back-up of Fuel Cell (FC), Wind Turbine (WT), Photovoltaics (PV), Micro Turbine (MT) as well as storage devices to meet the energy mismatch. The problem is formulated as a nonlinear constraint optimization problem to minimize the total cost of the grid and RESs, simultaneously. In addition, the problem considers the interactive effects of MG and utility in a 24 hour time interval which would in- crease the complexity of the problem from the optimization point of view more severely. The proposed optimization technique is consisted of a self adaptive modification method compromised of two modification methods based on bat algorithm to explore the total search space globally. The superiority of the proposed method over the other well-known algorithms is demonstrated through a typical renewable MG as the test system.
基金supported in part by the Fundamental Research Funds for the Central Universities(3102017OQD110)the Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-435)+3 种基金the Project Funded by China Postdoctoral Science Foundation(2019M663818)the National Key Research and Development Program of China(2019YFB1703800)Guangdong Basic and Applied Basic Research Foundation(2019A1515111076)the National Natural Science Foundation of China(71931007)。
文摘This work studies the robust deadlock control of automated manufacturing systems with multiple unreliable resources. Our goal is to ensure the continuous production of the jobs that only require reliable resources. To reach this goal, we propose a new modified Banker's algorithm(MBA) to ensure that all resources required by these jobs can be freed. Moreover,a Petri net based deadlock avoidance policy(DAP) is introduced to ensure that all jobs remaining in the system after executing the new MBA can complete their processing smoothly when their required unreliable resources are operational. The new MBA together with the DAP forms a new DAP that is robust to the failures of unreliable resources. Owing to the high permissiveness of the new MBA and the optimality of the DAP, it is tested to be more permissive than state-of-the-art control policies.