The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in...The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.展开更多
The two kinds of rigid polyurethane(PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in we...The two kinds of rigid polyurethane(PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight.The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams.The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples.The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently.Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples.The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.展开更多
The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,sampl...The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,samples of lignin-modified asphalt binder samples with different content of lignin(3%,6%,9%,12%,and 15%)and unmodified asphalt(control)were tested using Fourier transform infrared spectroscopy(FTIR),dynamic shear rheometer(DSR),and thermogravimetry.The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed.The FTIR analysis shows that no new characteristic absorption peak is seen in the infrared spectral of the lignin-modified asphalt binder samples,and some bands characteristic of lignin-related peaks gradually increased with the increase of lignin content.This suggests that the modification of lignin-modified asphalt binder samples was due to physical blending rather than chemical modification.The increase of lignin content in the lignin-modified asphalt samples increases the complex shear modulus G*of the samples and decreases the phase angles of the samples.Similarly,the anti-rutting performance(G*/sinδ)of the samples improves with the increase in lignin content,but this is not significant after any addition of lignin that exceeds 12%of asphalt mass.Thermal characterizations show that the thermal decomposition rate of lignin is lower,and its residual amount is higher compared to that of asphalt,which is a major reason for the improved stability of lignin-modified asphalt binders at high temperatures.The effect of lignin on the thermal stability of asphalt is dependent on both lignin content and temperature.It has a positive effect on the thermal stability of asphalt at high temperatures within the range of asphalt service temperature(25℃–200℃).Additionally,from the pyrolysis viewpoint,it was explained that excessive lignin addition is not beneficial to the thermal stability of asphalt at high temperatures,which is consistent with the DSR test result conducted high temperatures.展开更多
Although lignin is the second most abundant forest biomass polymer,it has been largely neglected in hydrogel electrolytes due to its insolubility and inflexibility.In this study,a double-crosslinked hydrogel was prepa...Although lignin is the second most abundant forest biomass polymer,it has been largely neglected in hydrogel electrolytes due to its insolubility and inflexibility.In this study,a double-crosslinked hydrogel was prepared using aspartic acid-modified lignin and sodium alginate,significantly improving the mechanical properties.The hydrogel exhibited an exceptional strain of 3008%and a tensile strength of 0.03 MPa,demonstrating its remarkable mechanical properties.In addition,high ionic conductivity(11.7 mS∙cm-1)was obtained due to the abundant presence of hydrophilic groups in the hydrogel.The hydrogel-assembled supercapacitor manifested an impressive specific capacitance of 39.46 F∙g^(-1).Notably,the supercapacitor showed a wide potential window of 0-1.5 V and achieved a maximum energy density of 5.48 Wh∙kg-1 at the power density of 499.9 W∙kg^(-1).The capacitance retention remained at 115%after 10000 charge-discharge cycles.Finally,the coulombic efficiency was almost 100%during the cycles.Upon reaching a bending angle of 90°,the specific capacitance retention remained impressively high at 94%.These results suggest that the supercapacitor cans maintain normal electrochemical performance under extremely harsh conditions.展开更多
文摘The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.
基金The key project of "11th Five-Year Plan" in Heilongjiang Province (No. GB06B501-3)
文摘The two kinds of rigid polyurethane(PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight.The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams.The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples.The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently.Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples.The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.
基金This research was funded by the Scientific Research Fund of Yunnan Provincial Department of Education(Grant No.2020J0420)Open Fund based on Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products(Grant No.2015004).In addition,the authors would like to thank the reviewers of this paper for their ever-present support and valuable advice.
文摘The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,samples of lignin-modified asphalt binder samples with different content of lignin(3%,6%,9%,12%,and 15%)and unmodified asphalt(control)were tested using Fourier transform infrared spectroscopy(FTIR),dynamic shear rheometer(DSR),and thermogravimetry.The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed.The FTIR analysis shows that no new characteristic absorption peak is seen in the infrared spectral of the lignin-modified asphalt binder samples,and some bands characteristic of lignin-related peaks gradually increased with the increase of lignin content.This suggests that the modification of lignin-modified asphalt binder samples was due to physical blending rather than chemical modification.The increase of lignin content in the lignin-modified asphalt samples increases the complex shear modulus G*of the samples and decreases the phase angles of the samples.Similarly,the anti-rutting performance(G*/sinδ)of the samples improves with the increase in lignin content,but this is not significant after any addition of lignin that exceeds 12%of asphalt mass.Thermal characterizations show that the thermal decomposition rate of lignin is lower,and its residual amount is higher compared to that of asphalt,which is a major reason for the improved stability of lignin-modified asphalt binders at high temperatures.The effect of lignin on the thermal stability of asphalt is dependent on both lignin content and temperature.It has a positive effect on the thermal stability of asphalt at high temperatures within the range of asphalt service temperature(25℃–200℃).Additionally,from the pyrolysis viewpoint,it was explained that excessive lignin addition is not beneficial to the thermal stability of asphalt at high temperatures,which is consistent with the DSR test result conducted high temperatures.
基金support from the National Natural Science Foundation of China(Grant No.51961125207)the Foundation(Grant No.KF202114)of Key Laboratory of Pulp and Paper Science&Technology of Ministry of Education,Qilu University of Technology(Shandong Academy of Sciences),and Dalian High Level Talent Innovation Support Program(Dalian Youth Science and Technology Star Project Support Program)(Grant No.2023RQ043)+2 种基金Open Foundation of Dalian Jinshiwan Laboratory(Grant No.Dljswkf202412)Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.LJ212410152015)Introduction of Talent Research Start-up Funding Projects(Dalian Polytechnic University,Grant No.LJBKY2024013).
文摘Although lignin is the second most abundant forest biomass polymer,it has been largely neglected in hydrogel electrolytes due to its insolubility and inflexibility.In this study,a double-crosslinked hydrogel was prepared using aspartic acid-modified lignin and sodium alginate,significantly improving the mechanical properties.The hydrogel exhibited an exceptional strain of 3008%and a tensile strength of 0.03 MPa,demonstrating its remarkable mechanical properties.In addition,high ionic conductivity(11.7 mS∙cm-1)was obtained due to the abundant presence of hydrophilic groups in the hydrogel.The hydrogel-assembled supercapacitor manifested an impressive specific capacitance of 39.46 F∙g^(-1).Notably,the supercapacitor showed a wide potential window of 0-1.5 V and achieved a maximum energy density of 5.48 Wh∙kg-1 at the power density of 499.9 W∙kg^(-1).The capacitance retention remained at 115%after 10000 charge-discharge cycles.Finally,the coulombic efficiency was almost 100%during the cycles.Upon reaching a bending angle of 90°,the specific capacitance retention remained impressively high at 94%.These results suggest that the supercapacitor cans maintain normal electrochemical performance under extremely harsh conditions.