期刊文献+
共找到3,501篇文章
< 1 2 176 >
每页显示 20 50 100
Recent progress of chemical methods for lysine site-selective modification of peptides and proteins
1
作者 Jian Li Jinjin Chen +2 位作者 Qi-Long Hu Zhen Wang Xiao-Feng Xiong 《Chinese Chemical Letters》 2025年第5期64-73,共10页
Chemical modification of native peptides and proteins is a versatile strategy to facilitate late-stage diversification for functional studies.Among the proteogenic amino acids,lysine is extensively involved in posttra... Chemical modification of native peptides and proteins is a versatile strategy to facilitate late-stage diversification for functional studies.Among the proteogenic amino acids,lysine is extensively involved in posttranslational modifications and the binding of ligands to target proteins,making its selective modification attractive.However,lysine’s high natural abundance and solvent accessibility,as well as its relatively low reactivity to cysteine,necessitate addressing chemoselectivity and regioselectivity for the Lys modification of native proteins.Although Lys chemoselective modification methods have been well developed,achieving site-selective modification of a specific Lys residue remains a great challenge.In this review,we discussed the challenges of Lys selective modification,presented recent examples of Lys chemoselective modification,and summarized the currently known methods and strategies for Lys site-selective modification.We also included an outlook on potential solutions for Lys site-selective labeling and its potential applications in chemical biology and drug development. 展开更多
关键词 Protein modification LYSINE Site-selective modification Antibody-drug conjugates PEPTIDE
原文传递
Recent advances in the modification of melamine sponge for oil-water separation 被引量:2
2
作者 Xing Zhou Dexiang Li +5 位作者 Lili Wang Qi Wang Zhen Wang Qing Jing Rinderer Marisol Lu Li 《Journal of Materials Science & Technology》 2025年第4期209-224,共16页
Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu... Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation. 展开更多
关键词 Melamine sponge HYDROPHOBICITY LIPOPHILICITY Oil-water separation modification
原文传递
Improving regulatory T cell-based therapy:insights into post-translational modification regulation 被引量:1
3
作者 Aiting Wang Yanwen Wang +2 位作者 Rui Liang Bin Li Fan Pan 《Journal of Genetics and Genomics》 2025年第2期145-156,共12页
Regulatory T(Treg)cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases,such as autoimmune diseases,graft-versus-host disease(GVHD),tumors,and infectious diseases.Treg cells... Regulatory T(Treg)cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases,such as autoimmune diseases,graft-versus-host disease(GVHD),tumors,and infectious diseases.Treg cells exert suppressive function via distinct mechanisms,including inhibitory cytokines,granzyme or perforin-mediated cytolysis,metabolic disruption,and suppression of dendritic cells.Forkhead Box P3(FOXP3),the characteristic transcription factor,is essential for Treg cell function and plasticity.Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications(PTMs),including ubiquitination,acetylation,phosphorylation,methylation,glycosylation,poly(ADP-ribosyl)ation,and uncharacterized modifications.This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function.Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases,GVHD,tumors,and infectious diseases. 展开更多
关键词 Treg cell FOXP3 UBIQUITINATION ACETYLATION PHOSPHORYLATION METHYLATION GLYCOSYLATION Post-translational modification
原文传递
Preparation and Modification of MXene Composites for Application in Electrochemical Energy Storage
4
作者 Zhang-Hai You Ding-Ze Lu +5 位作者 Kiran Kumar Kondamareddy Wen-Ju Gu Peng-Fei Cheng Jing-Xuan Yang Rui Zheng Hong-Mei Wang 《电化学(中英文)》 北大核心 2025年第5期1-27,共27页
With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage techno... With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions. 展开更多
关键词 MXene Preparation process modification strategy Electrochemical energy storage
在线阅读 下载PDF
Physical Antibacterial Surface Modifications on Titanium-Based Implant Materials
5
作者 Zhang Zhe Liu Hui +2 位作者 Lin Manfeng Cai Zongyuan Zhao Dapeng 《稀有金属材料与工程》 北大核心 2025年第1期84-93,共10页
Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics... Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized. 展开更多
关键词 physical antibacterial behavior surface modification titanium alloy implant material
原文传递
Modification of food protein fibrils:during and after fibrillization
6
作者 Kefan Ouyang Hexiang Xie +2 位作者 Hua Xiong Qiang Zhao Wenjun Wang 《Food Science and Human Wellness》 2025年第9期3346-3360,共15页
Fibrillization endows food proteins with anisotropic nanostructures,significantly enhancing their functional properties.The resultant food protein fibrils(FPFs)have garnered attention for their diverse applications ac... Fibrillization endows food proteins with anisotropic nanostructures,significantly enhancing their functional properties.The resultant food protein fibrils(FPFs)have garnered attention for their diverse applications across the food industry.However,the full potential of FPFs is hindered by inherent challenges,particularly their limited stability.This review critically examines the formation of FPFs in food processing,the new protein sources,and on the modification strategies of FPFs,thereby unlocking new avenues for FPF utilization in food processing.In particular,the strategies during and after fibrillization are highlighted.The first strategy is to modify the structure and function of protein fibrils by influencing fibrillization,such as through pretreatment,incubation conditions,nuclei induction,and ingredient interactions.The second strategy is to modify the mature FPFs by regulating their properties and interactions with other components.The review also discusses the potential applications and challenges of FPFs in food systems,such as food preservation,functional food design,and novel delivery carriers. 展开更多
关键词 Amyloid fibrils modification Functionalize SELF-ASSEMBLY Protein nanofibrils
在线阅读 下载PDF
Startle response and its prepulse modification in health and under different psychopathologies:Could we find any specific patterns?
7
作者 Zinaida I Storozheva 《World Journal of Psychiatry》 2025年第8期19-35,共17页
The startle response(SR)is a generalized defensive response elicited by the presentation of a sudden intense stimulus.The presentation of a less intense signal(prepulse)before the central stimulus(pulse)affects the am... The startle response(SR)is a generalized defensive response elicited by the presentation of a sudden intense stimulus.The presentation of a less intense signal(prepulse)before the central stimulus(pulse)affects the amplitude and latency of SR differently depending on the prepulse lead interval.The most studied form of such changes is prepulse inhibition(PPI),i.e.a decrease in SR amplitude at lead intervals of 50-500 ms.Prepulse facilitation,i.e.an increase in SR amplitude,can also be observed at lead intervals of 2000-4500 ms.The PPI deficiency has been found in a variety of psychopathologies and it has been suggested that it is a transdiagnostic phenomenon.However,some data from the literature support the existence of specific different nosologies,such as neurophysiological,neurochemical and molecular mechanisms that cause PPI lowering and affect prepulse facilitation of SR.This review provides a comparative analysis of studies on SR prepulse modification in healthy subjects and different groups of patients with mental or neurological disorders.The results of such an analysis may help to define directions for further research to improve methods of early diagnosis and to improve the validity of translational models. 展开更多
关键词 Startle reaction Prepulse modification Neuropsychiatric disorders Attention GENES Brain potentials
暂未订购
Recent Advancements in the Surface Modification of Additively Manufactured Metallic Bone Implants
8
作者 Jianhui Li Haitao Fan +4 位作者 Hui Li Licheng Hua Jianke Du Yong He Yuan Jin 《Additive Manufacturing Frontiers》 2025年第1期97-124,共28页
Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been cr... Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction. 展开更多
关键词 Surface modification Additive manufacturing Bone implants Defect mitigation Coatings MICROSTRUCTURES
暂未订购
New perspectives on DNA methylation modifications in ocular diseases
9
作者 Fei-Fei Zong Da-Dong Jia +6 位作者 Guang-Kun Huang Meng Pan Hao Hu Shi-Yi Song Liang Xiao Ru-Weng Wang Liang Liang 《International Journal of Ophthalmology(English edition)》 2025年第2期340-350,共11页
The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases.DNA methylation can regulate gene expression,thereby affecting cell function a... The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases.DNA methylation can regulate gene expression,thereby affecting cell function and signal transduction.Ophthalmic diseases are a kind of complex diseases,and their pathogenesis involves many factors such as genetic,environmental and individual differences.In addition,inflammation,oxidative stress and lipid metabolism,which abnormal DNA methylation is closely related to,are also considered to be major factors in eye diseases.The current understanding of DNA methylation in eye diseases is becoming more complex and comprehensive.In addition to the simple suppression of gene expression by hypermethylation,factors such as hypomethylation or demethylation,DNA methylation in non-promoter regions,interactions with other epigenetic modifications,and dynamic changes in DNA methylation must also be considered.Interestingly,although some genes are at abnormal methylation levels,their expression is not significantly changed,which indirectly reflects the complexity of gene regulation.This review aims to summarize and compare some relevant studies,and provide with new ideas and methods for the prevention and treatment of different eye diseases,such as glaucoma,retinoblastoma,and diabetic retinopathy. 展开更多
关键词 DNA methylation modification EPIGENETIC GLAUCOMA RETINOBLASTOMA diabetic retinopathy methylase inhibitors
原文传递
Effects of a culture-specificbehavior modificationprogram on glycated hemoglobin and blood pressure among adults with diabetes and hypertension:A randomized controlled trial
10
作者 Patcharee Numsang Sureeporn Thanasilp Ratsiri Thato 《International Journal of Nursing Sciences》 2025年第4期328-334,I0002,共8页
Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a... Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a single-blind randomized controlled trial design.From January to May 2024,a total of 60 patients with uncontrolled type 2 diabetes and hypertension from the primary care unit of a hospital in northeastern(Isan)Thailand were recruited.The intervention group received the usual care supplemented by a culture-specificbehavior modificationprogramm implemented through interactive classes and online web application consisting of information,motivation,and behavioral skills(diet,exercise,and medication use),the control group received the usual care.HbA1c and blood pressure measurements were collected at both baseline and at 12 weeks.Results:A total of 51 patients completed the study,the intervention group(n=26)and control group(n=25),respectively.After 12 weeks,23.1%of patients in the intervention group could maintain their HbA1c<7.0%;those with poorly controlled HbA1c decreased from 7.7%at baseline to 3.8%at 12 weeks.After 12 weeks,69.2%of intervention group participants could maintain systolic blood pressure<130 mmHg and 53.8%could keep diastolic blood pressure<80 mmHg.Analysis revealed that HbA1c,systolic and diastolic blood pressure levels in the intervention group were lower than the control group after the intervention(P<0.05).There was a statistically significantdifference a linear combination of HbA1c and blood pressure(systolic and diastolic BP levels)between time and group(P<0.05).Conclusion:These results suggest that healthcare providers can incorporate elements of this program to manage blood glucose and blood pressure effectively.Future studies should consider a longitudinal design with a larger sample size and include outcomes of lipid levels to confirmlong-term motivation. 展开更多
关键词 Behavior modification Blood pressure Glycated hemoglobin HYPERTENSION NURSING Patients Type 2 diabetes mellitus
暂未订购
Enhancing corrosion resistance of epoxy resin coatings through dual modification of graphene oxide with maleic anhydride and paraphenylenediamine
11
作者 Xin Li Jie Chen +4 位作者 Jian-xin Bi Dong-xia Huo Jun Liu Jun-hui Dong Ding Nan 《Journal of Iron and Steel Research International》 2025年第5期1176-1185,共10页
Paraphenylenediamine(PPDA)-grafted maleic anhydride(MAH)-modified graphene oxide(PGO)was synthesized through a dual modification process.Initially,MAH was employed to modify graphene oxide(GO)to enhance its reactive s... Paraphenylenediamine(PPDA)-grafted maleic anhydride(MAH)-modified graphene oxide(PGO)was synthesized through a dual modification process.Initially,MAH was employed to modify graphene oxide(GO)to enhance its reactive sites.Subsequently,PPDA was utilized for further modification of MAH-modified GO(MGO).Through a comprehensive analysis,the successful grafting of MAH and PPDA onto GO was confirmed.It was concurrently established that the optimal ratio of PPDA to MGO is 1:1.This approach yielded PGO characterized by outstanding dispersibility and barrier properties in epoxy resin(EP)coaings for Q235 steel.The corrosion resistance of EP coatings containing varying amounts of PGO was assessed using electrochemical workstation and salt spray testing.After immersing in a 3.5 wt.%NaCl solution for 300 h,the composite coating containing 0.1 wt.%PGO exhibited superior performance in terms of low-frequency impedance modulus,measuring at 1.1×10^(8)Ωcm^(2).The lowest corrosion current density was 2.32×10^(–10)A cm^(−2),and the self-corrosion voltage was−0.301 V.Additionally,polarization testing indicated that this coating also displayed the lowest corrosion rate,specifically 1.383×10^(–7)mm/a. 展开更多
关键词 Graphene oxide modification PARAPHENYLENEDIAMINE Maleic anhydride Corrosion resistance
原文传递
Current and emerging therapies for Parkinson’s disease: advances toward disease modification
12
作者 Rajeshwar Kaitwad Ashish Gulwe +3 位作者 Chandan Dipke Hanumant Suryawanshi Nagesh Murge Dinesh Nalage 《Life Research》 2025年第4期12-21,共10页
Parkinson’s disease is a complex,progressive neurodegenerative disorder primarily characterized by the degeneration of dopaminergic neurons in the substantia nigra,leading to motor and non-motor symptoms.While sympto... Parkinson’s disease is a complex,progressive neurodegenerative disorder primarily characterized by the degeneration of dopaminergic neurons in the substantia nigra,leading to motor and non-motor symptoms.While symptomatic treatments such as levodopa and monoamine oxidase-B inhibitors offer short-term relief,they do not halt disease progression.In recent years,significant advances have been made in understanding the molecular mechanisms underlying Parkinson’s disease,including alpha-synuclein aggregation,mitochondrial dysfunction,neuroinflammation,and lysosomal impairment.These insights have spurred the development of targeted therapeutic strategies aimed at modifying disease progression.This review comprehensively explores emerging approaches such as gene and cell therapies,LRRK2 inhibitors,alpha-synuclein immunotherapy,and gut microbiota modulation.We also discuss the therapeutic potential of mitophagy activators,digital biomarkers,and neuromodulation techniques.Each therapeutic strategy is critically evaluated in the context of underlying pathophysiological mechanisms.Special attention is given to recent clinical trials(2023–2025),translational gaps,and the potential of personalized medicine in Parkinson’s disease management.Furthermore,we examine the integration of multi-omics data and digital tools in advancing precision therapeutics.Overall,this review highlights current challenges and future prospects in the journey toward disease-modifying interventions that move beyond symptomatic relief. 展开更多
关键词 Parkinson’s disease dopamine therapy gene therapy NEUROMODULATION drug delivery disease modification NEUROPROTECTION
暂未订购
Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies
13
作者 Wenfeng Zang Yixin Sun +9 位作者 Jingyi Zhang Yanzhong Hao Qianhui Jin Hongying Xiao Zuo Zhang Xianbao Shi Jin Sun Zhonggui He Cong Luo Bingjun Sun 《Chinese Chemical Letters》 2025年第5期453-459,共7页
Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differe... Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differences between single types of modification modules,neglecting the impact of steric-hindrance effect caused by chemical structure.Herein,single-tailed modification module with low-steric-hindrance effect and two-tailed modification module with high-steric-hindrance effect were selected to construct paclitaxel prodrugs(P-LA_(C18)and P-BAC18),and the in-depth insights of the sterichindrance effect on prodrug nanoassemblies were explored.Notably,the size stability of the two-tailed prodrugs was enhanced due to improved intermolecular interactions and steric hindrance.Single-tailed prodrug nanoassemblies were more susceptible to attack by redox agents,showing faster drug release and stronger antitumor efficacy,but with poorer safety.In contrast,two-tailed prodrug nanoassemblies exhibited significant advantages in terms of pharmacokinetics,tumor accumulation and safety due to the good size stability,thus ensuring equivalent antitumor efficacy at tolerance dose.These findings highlighted the critical role of steric-hindrance effect of the modification module in regulating the structureactivity relationship of prodrug nanoassemblies and proposed new perspectives into the precise design of self-assembled prodrugs for high-performance cancer therapeutics. 展开更多
关键词 Prodrug nanoassemblies Two-tailed modification module Steric-hindrance PACLITAXEL Anticancer
原文传递
Current status and perspectives on design,fabrication,surface modification,and clinical applications of biodegradable magnesium alloys
14
作者 Jianzeng Ren Zhou Jiang +3 位作者 Jianbing He Xiaoying Wang Weihong Jin Zhentao Yu 《Journal of Magnesium and Alloys》 2025年第8期3564-3595,共32页
Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the e... Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives. 展开更多
关键词 Magnesium-based biodegradable metals ALLOYING Fabrication techniques PURIFICATION Surface modification Structural design
在线阅读 下载PDF
Ultrasonic Modification of Wood Surface:Study of Macro and Micro Properties after Long-Term Storage
15
作者 Alena Vjuginova Leonid Leontyev 《Journal of Renewable Materials》 2025年第9期1819-1828,共10页
In this paper,the stability of the results of ultrasonic wood surface modification after long-term storage,including macroscopic properties and microstructure of specimens,was investigated.Specimens of aspen wood(Popu... In this paper,the stability of the results of ultrasonic wood surface modification after long-term storage,including macroscopic properties and microstructure of specimens,was investigated.Specimens of aspen wood(Populus tremula)were processed by the developed ultrasonic method of wood surface modification in three different treatment modes and the surface hardness of the specimens was evaluated after processing and after storing the specimens for more than 5 years since long-term stability is an important factor for the use of ultrasonically modified sawn timber as construction and finishing materials.The obtained results of surface hardness measurements by the Leeb method showed that the decrease in hardness after long-term storage is approximately 6.6%for the lowest degree of treatment and approximately 3.4%and 2.4%for medium and high degrees of treatment,taking into account the fact of the average increase in surface hardness approximately 2–4 times,this decrease is insignificant.The internal structure of the specimens after storage was studied by scanning electron microscope(SEM),and deformations of the wood surface layer without damage or rupture were analyzed.The derived stable results confirm the potential of the ultrasonic method for wood surface modification. 展开更多
关键词 Wood modification wood densification wood hardness wood density wood surface ultrasonic technology power ultrasound
在线阅读 下载PDF
Grafting Modification of Cellulose Nanofibril with 2-(N,N-Dimethylamino)Ethyl Methacrylate and 2-Hydroxyethyl Methacrylate as a Barrier-Improved Coating for Paper-Based Food Packaging
16
作者 Noverra Mardhatillah Nizardo Alifah Nurul Saffanah +4 位作者 Annisa Fitri Salsabila Amanda Aurellia Putri Aniek Sri Handayani Azizah Intan Pangesty Mochamad Chalid 《Journal of Renewable Materials》 2025年第6期1209-1227,共19页
Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environment... Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environmental situation.This issue increases the concern for the environment and encourages the usage of alternative materials.Cellulose nanofibrils(CNF)are abundant and biodegradable,which makes them ideal candidates to replace plastic coatings.The ability to form H-bonds between the hydroxyl groups makes coated paper with CNF have good strength,but poor barrier properties.The barrier properties can be improved by grafting DMAEMA or HEMA onto CNF(CNF-g-PDMAEMA and CNF-g-PHEMA,respectively).Thus,the objective of this study was to modify CNF chemically to enhance the barrier properties of the food packaging paper.It was found that paper coated with CNFg-PDMAEMA and CNF-g-PHEMA exhibited improvements in mechanical and barrier properties while maintaining the desired viscosity for the coating process.The water contact angle increased for paper coated with CNF-g-PHEMA and CNF-g-PDMAEMA,reaching a maximum of 97.51°and 92.58°,respectively with the decreasing Cobb_(60) values by 49% and 11%.The oil absorption was also reduced for both coated papers compared to the blank paper.Mechanical properties improved,as indicated by a 3% increase in tensile strength for paper coated with CNF-g-PHEMA and a 5% for paper coated with CNF-g-PDMAEMA.The results indicated significant potential for the application of modified CNF in coatings for food packaging paper.Noteworthy,the grafting process should be improved to enhance the mechanical and barrier properties of the coated paper. 展开更多
关键词 Cellulose nanofibril GRAFTING biopolymer modification paper coating barrier properties
在线阅读 下载PDF
Suppression of Ag dewetting and sinterability improvement of submicron Ag-coated Cu particles as fillers in sintering paste by surface modification with stearic acid
17
作者 Yeongjung KIM Yong-Sung EOM +1 位作者 Kwang-Seong CHOI Jong-Hyun LEE 《Transactions of Nonferrous Metals Society of China》 2025年第6期2008-2020,共13页
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(... Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles. 展开更多
关键词 submicron Ag-coated Cu particle SINTERING DEWETTING surface modification stearic acid electrical resistivity
在线阅读 下载PDF
Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry
18
作者 Keqiang Shi Xiujuan Hong +5 位作者 Dongyan Xu Tao Pan Huiwen Wang Hongru Feng Cheng Guo Yuanjiang Pan 《Chinese Chemical Letters》 2025年第3期217-221,共5页
RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.Howe... RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.However,to the best of our knowledge,RNA modifications in peripheral white blood cells(immune cells)have not been systematically investigated before.Here we utilized hydrophilic interaction liquid chromatography-tandem mass spectrometry(HILIC-MS/MS)for the quantification of 19 chemical modifications in total RNA and 17 chemical modifications in small RNA in peripheral white blood cells from breast cancer patients and healthy controls.We found out 13 RNA modifications were up-regulated in total RNA samples of breast cancer patients.For small RNA samples,only N6-methyladenosine(m^(6)A)was down-regulated in breast cancer patients(P<0.0001).Receiver operating characteristic(ROC)curves analysis showed that N4-acetylcytidine(ac^(4)C)in total RNA had an area under curve(AUC)value of 0.833,and m^(6)A in small RNA had an AUC value of 0.994.Our results further illustrated that RNA modifications may play vital roles in immune cell biology of breast cancer,and may act as novel biomarkers for the diagnosis of breast cancer. 展开更多
关键词 RNA modification Mass spectrometry Breast cancer Immune cell BIOMARKER
原文传递
Advanced Bismuth-Based Anode Materials for Efficient Potassium Storage:Structural Features,Storage Mechanisms and Modification Strategies
19
作者 Yiye Tan Fanglan Mo Hongyan Li 《Nano-Micro Letters》 2025年第6期1-39,共39页
Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the futur... Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the future development of PIBs.Bismuth-based anode materials demonstrate great potential for storing potassium ions(K^(+))due to their layered structure,high theoretical capacity based on the alloying reaction mechanism,and safe operating voltage.However,the large radius of K^(+)inevitably induces severe volume expansion in depotassiation/potassiation,and the sluggish kinetics of K^(+)insertion/extraction limits its further development.Herein,we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials.Firstly,this review analyzes the structure,working mechanism and advantages and disadvantages of various types of materials for potassium storage.Then,based on this,the manuscript focuses on summarizing modification strategies including structural and morphological design,compositing with other materials,and electrolyte optimization,and elucidating the advantages of various modifications in enhancing the potassium storage performance.Finally,we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified. 展开更多
关键词 Bismuth-based materials Potassium-ion batteries ANODE Potassium storage mechanism modification strategies
在线阅读 下载PDF
Enhancing the photocatalytic efficiency by the molecular modification effect derived from pollutant adsorption on highly crystalline BiOBr
20
作者 Yang Jin Tongyin Liu +2 位作者 Yanpeng Mao Fan Li Chun Hu 《Journal of Environmental Sciences》 2025年第2期263-273,共11页
The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic... The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic photocatalyst.A highly crystalline BiOBr(c-BiOBr)was synthesized by a two-step preparation process.Owing to the calcination,the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr.The complex of organic pollutant and[Bi_(2)O_(2)]^(2+)could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes(h^(+)).Moreover,the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons,which would coupling with the photoexcitation to promote generate more O_(2)^(•-).The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants.This work strongly deepens the understanding of the molecularmodification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment. 展开更多
关键词 Highly crystalline BiOBr Pollutant adsorption Molecular modification PHOTOCATALYSIS Water treatment
原文传递
上一页 1 2 176 下一页 到第
使用帮助 返回顶部