In order to look for the best proportion of β-tricalcium phosphate(β-TCP)and poly(lactideco-glycolide)(PLGA)we fabricated porous composites β-TCP/PLGA scaffold using freeze-drying method.Morphologicalcharacte...In order to look for the best proportion of β-tricalcium phosphate(β-TCP)and poly(lactideco-glycolide)(PLGA)we fabricated porous composites β-TCP/PLGA scaffold using freeze-drying method.Morphologicalcharacterization using scanning electron microscopy showed that the interconnected pore distribution was even and there was no significant difference with the increase of PLGA content.Moreover,the porosity,compressive strength and degradation in vitro were characterized.The fabricated scaffolds with increased PLGA in the composites β-TCP/PLGA scaffolds willget stronger mechanicalproperty and better appearance,furthermore,get suitable environment for cells.According to the evaluation indexes for the tissue engineering scaffold,the group of scaffold(β-TCP/PLGA=6:4)was selected to evaluate the induced celladhesion and proliferative ability of the scaffolds.Then as transplant embed into the bone criticaldefect sites on rats femur.The repairing processes of bone defect sites were characterized by X-ray analysis within 12 weeks.X-ray analysis showed that the bone defect sites alldisplayed the formation of callus obviously,In summary,our data suggest that the scaffold(β-TCP/PLGA=6:4)has a promising clinicalfuture in regeneration of bone criticaldefects.展开更多
Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by ...Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by γ-(2,3-epoxypropoxy) propytrimethoxysilane(KH-560). The interfacial interactions between UF microcapsules and KH-560 were studied by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectrometric analysis(XPS) of microcapsules. The surface topography of microcapsules was characterized by scanning electron microscopy(SEM). The thermal stability and mechanical properties were evaluated. FTIR and XPS results showed that there were physical and chemical combinations between the silicon coupling agent and the microcapsules surface. The thermal stability and mechanical property analysis showed that the addition of KH-560 could greatly improve the thermal stability, tensile property and elastic property. SEM results indicated that the addition of KH-560 could improve the bonding between the surface of microcapsules and resin matrix and improve the ability of self-healing.展开更多
In this investigation,attempts are made to examine the effects of soil-structure interaction on the deflection modification factor of multistory buildings and to clarify the role of deformable soil on this factor.A co...In this investigation,attempts are made to examine the effects of soil-structure interaction on the deflection modification factor of multistory buildings and to clarify the role of deformable soil on this factor.A comprehensive study is conducted to investigate the effect of inertial interaction on displacement demand ratios in soil-structure systems with different structural characteristics and various non-dimensional parameters,using a simplified interacting model.A two-step regression analysis of the nonlinear,dynamic computer simulation results obtained,leads to a reliable and accurate formula for predicting deflection modification factors that incorporate foundation flexibility.The results illustrate that the application of deflection modification factors derived from fixed-base structures can lead to unsafe evaluation of the structures on soft soil.The proposed formula provides a useful tool for design engineers to incorporate the effect of soil-structure interaction into the evaluation of structural deformations.展开更多
Modified soils(MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch(CS) has been tested as an effective soil modifier, but little is...Modified soils(MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch(CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water.This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils(CS-MSs). Results showed that the dissolved organic carbon(DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and0.293 meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7 mg/L, respectively.The excitation–emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044 meq/g was used, DOC was increased from 3.4 to 3.9 mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures(e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation.展开更多
The article is focused on the influence of inorganic salts on the adsorption of cationically modified starch to fibers. Results show that low concentrations of inorganic salts usually affect the process of adsorption ...The article is focused on the influence of inorganic salts on the adsorption of cationically modified starch to fibers. Results show that low concentrations of inorganic salts usually affect the process of adsorption in a positive way. Adsorption efficiency at higher concentrations, however, depends on the type of inorganic salts as well as the sequence of adding inorganic salts and starch to paper suspension.展开更多
A series of Y zeolites exchanged with different amount of cerium and lanthanum cations were investigated. Comprehensive routine analysis tools including X-ray photoelectron spectroscopy(XPS), X-ray fluorescence(XRF...A series of Y zeolites exchanged with different amount of cerium and lanthanum cations were investigated. Comprehensive routine analysis tools including X-ray photoelectron spectroscopy(XPS), X-ray fluorescence(XRF), X-ray diffraction(XRD) and Py-Fourier transform infrared spectroscopy(Py-FTIR) were used to identify the cation location, and the result was verified via XRD Rietveld study. The results revealed that almost all the RE cations in RE-4, most cations in RE-8 to RE-14 and part of cations in RE-16 were located in the sodalite cage. The Al^(IV)/(Al^V+Al^(VI)) values revealed by ^(27)Al MAS NMR spectra, the silicon aluminum ratio of the framework(SARF) values deduced from ^(29)Si MAS NMR spectra and XRD, and hydroxyl amount were reasonably in accordance with the location and content of rare earth cations. The hydrothermal stability derived from in situ XRD investigation and catalyst activity provided by micro-activity test manifested that samples RE-8 to RE-14 exhibited better performances than RE-4 and RE-16, among which RE-12 had the best properties. The phenomena were interpreted by the cation location and structural properties.展开更多
Applying conventional analytical methods,the following results have been found:the satura-tion value of acid--modified multifunction copolyest fibre( acid-modified polyester fibre)is1.74,then this kind of fibre is goo...Applying conventional analytical methods,the following results have been found:the satura-tion value of acid--modified multifunction copolyest fibre( acid-modified polyester fibre)is1.74,then this kind of fibre is good for being dyed medium and light colours with cationicdyes;its level of erystalization is lower than of PET fibre;the third monomer(SIPM)con-tent in the fibre will be reduced by about 8% by the "alkali treatment"in dyeing and finishingprocess:through measuring and analysing the dye-up-take curves of time and temperature ofdyeing the fibre with cationic dyes,we indicate the key factors in dyeing are the 100℃ dyeingtemperature and the time for heat preservation;moveover,adding sodium sulphate will help leveldyeing but lower the dye-uptake.展开更多
基金Funded by the National Natural Science Foundation of China(No.81201386)the China Postdoctoral Science Foundation(No.20100470110)
文摘In order to look for the best proportion of β-tricalcium phosphate(β-TCP)and poly(lactideco-glycolide)(PLGA)we fabricated porous composites β-TCP/PLGA scaffold using freeze-drying method.Morphologicalcharacterization using scanning electron microscopy showed that the interconnected pore distribution was even and there was no significant difference with the increase of PLGA content.Moreover,the porosity,compressive strength and degradation in vitro were characterized.The fabricated scaffolds with increased PLGA in the composites β-TCP/PLGA scaffolds willget stronger mechanicalproperty and better appearance,furthermore,get suitable environment for cells.According to the evaluation indexes for the tissue engineering scaffold,the group of scaffold(β-TCP/PLGA=6:4)was selected to evaluate the induced celladhesion and proliferative ability of the scaffolds.Then as transplant embed into the bone criticaldefect sites on rats femur.The repairing processes of bone defect sites were characterized by X-ray analysis within 12 weeks.X-ray analysis showed that the bone defect sites alldisplayed the formation of callus obviously,In summary,our data suggest that the scaffold(β-TCP/PLGA=6:4)has a promising clinicalfuture in regeneration of bone criticaldefects.
基金Funded by the Science and Technology Planning Project of Guangdong Province,China(2013B010404045)the National Natural Science Foundation of China(No.21106022)the Educational Commission of Guangdong Province,China(Yq2013100)
文摘Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by γ-(2,3-epoxypropoxy) propytrimethoxysilane(KH-560). The interfacial interactions between UF microcapsules and KH-560 were studied by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectrometric analysis(XPS) of microcapsules. The surface topography of microcapsules was characterized by scanning electron microscopy(SEM). The thermal stability and mechanical properties were evaluated. FTIR and XPS results showed that there were physical and chemical combinations between the silicon coupling agent and the microcapsules surface. The thermal stability and mechanical property analysis showed that the addition of KH-560 could greatly improve the thermal stability, tensile property and elastic property. SEM results indicated that the addition of KH-560 could improve the bonding between the surface of microcapsules and resin matrix and improve the ability of self-healing.
文摘In this investigation,attempts are made to examine the effects of soil-structure interaction on the deflection modification factor of multistory buildings and to clarify the role of deformable soil on this factor.A comprehensive study is conducted to investigate the effect of inertial interaction on displacement demand ratios in soil-structure systems with different structural characteristics and various non-dimensional parameters,using a simplified interacting model.A two-step regression analysis of the nonlinear,dynamic computer simulation results obtained,leads to a reliable and accurate formula for predicting deflection modification factors that incorporate foundation flexibility.The results illustrate that the application of deflection modification factors derived from fixed-base structures can lead to unsafe evaluation of the structures on soft soil.The proposed formula provides a useful tool for design engineers to incorporate the effect of soil-structure interaction into the evaluation of structural deformations.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030203)the Science Promotion Program of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (No. YSW2013B05)
文摘Modified soils(MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch(CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water.This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils(CS-MSs). Results showed that the dissolved organic carbon(DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and0.293 meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7 mg/L, respectively.The excitation–emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044 meq/g was used, DOC was increased from 3.4 to 3.9 mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures(e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation.
文摘The article is focused on the influence of inorganic salts on the adsorption of cationically modified starch to fibers. Results show that low concentrations of inorganic salts usually affect the process of adsorption in a positive way. Adsorption efficiency at higher concentrations, however, depends on the type of inorganic salts as well as the sequence of adding inorganic salts and starch to paper suspension.
基金Project supported by the Foundation of SINOPEC(111015)
文摘A series of Y zeolites exchanged with different amount of cerium and lanthanum cations were investigated. Comprehensive routine analysis tools including X-ray photoelectron spectroscopy(XPS), X-ray fluorescence(XRF), X-ray diffraction(XRD) and Py-Fourier transform infrared spectroscopy(Py-FTIR) were used to identify the cation location, and the result was verified via XRD Rietveld study. The results revealed that almost all the RE cations in RE-4, most cations in RE-8 to RE-14 and part of cations in RE-16 were located in the sodalite cage. The Al^(IV)/(Al^V+Al^(VI)) values revealed by ^(27)Al MAS NMR spectra, the silicon aluminum ratio of the framework(SARF) values deduced from ^(29)Si MAS NMR spectra and XRD, and hydroxyl amount were reasonably in accordance with the location and content of rare earth cations. The hydrothermal stability derived from in situ XRD investigation and catalyst activity provided by micro-activity test manifested that samples RE-8 to RE-14 exhibited better performances than RE-4 and RE-16, among which RE-12 had the best properties. The phenomena were interpreted by the cation location and structural properties.
文摘Applying conventional analytical methods,the following results have been found:the satura-tion value of acid--modified multifunction copolyest fibre( acid-modified polyester fibre)is1.74,then this kind of fibre is good for being dyed medium and light colours with cationicdyes;its level of erystalization is lower than of PET fibre;the third monomer(SIPM)con-tent in the fibre will be reduced by about 8% by the "alkali treatment"in dyeing and finishingprocess:through measuring and analysing the dye-up-take curves of time and temperature ofdyeing the fibre with cationic dyes,we indicate the key factors in dyeing are the 100℃ dyeingtemperature and the time for heat preservation;moveover,adding sodium sulphate will help leveldyeing but lower the dye-uptake.